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ABSTRACT 

With the development of the hydrogen economy, it requires a better understanding of the potential for 

fires and explosions associated with the unintended release of hydrogen within a partially confined 

space. In order to mitigate the hydrogen fire and explosion risks effectively, accurate predictions of the 

hydrogen transport and mixing processes are crucial. It is well known that turbulence modelling is one 

of the key elements for a successful simulation of gas mixing and transport. GASFLOW-MPI is a 

scalable CFD software solution used to predict fluid dynamics, conjugate heat and mass transfer, 

chemical kinetics, aerosol transportation and other related phenomena. In order to capture more 

turbulence information, the Large Eddy Simulation (LES) model and LES/RANS hybrid model 

Detached Eddy Simulation (DES) have been implemented and validated in 3-D CFD code 

GASFLOW-MPI. The standard Smagorisky SGS model is utilized in LES turbulence model. And the 

k-epsilon based DES model is employed. This paper assesses the capability of algebraic, k-epsilon, 

DES and LES turbulence model to simulate the mixing and transport behavior of highly buoyant gases 

in a partially confined geometry. Simulation results agree well with the overall trend measured in 

experiments conducted in a reduced scale enclosure with idealized leaks, which shows that all these 

four turbulent models are validated and suitable for the simulation of light gas behavior. Furthermore, 

the numerical results also indicate that the LES and DES model could be used to analysis the 

turbulence behavior in the hydrogen safety problems. 

1.0 INTRODUCTION  

With a growing interest in the hydrogen-powered systems in the last decade, a number of efforts 
are made to demonstrate that hydrogen can be used as an energy carrier, such as the mobile and 
stationary applications. A significant support was given by the international organisations, such as 
the network HySAFE [1] and IEA [2] and many important progresses were made. Today, the 
hydrogen safety is still a key issue for practical application. In order to evaluate and mitigate the 
potential for fires and explosions associated with the unintended release of hydrogen, accurate 
predictions of the hydrogen transport and mixing processes are crucial. Standard Benchmark 
Exercise Problems (SBEPs) [3-7] have been proposed to validate the CFD codes for hydrogen-
fuelled systems. GASFLOW-MPI is a well-developed parallel scalable CFD software solution to 
predict the fluid dynamics, conjugate heat and mass transfer, chemical kinetics, aerosol 
transportation and other related physical processes, which are the key physical phenomena in the 
hydrogen safety analysis [8]. Furthermore, GASFLOW has been validated by blind-/open- 
international benchmarks and widely used to analyse the hydrogen distribution and risk mitigation 
[9-16]. It is well known that turbulence modelling is one of the key elements for a successful 
simulation of hydrogen transport and mixing processes. In this paper, the hydrogen jets simulation 
in a partially confined space, which is one of the typical scenarios encountered in risk analyses for 
the future hydrogen energy carrier, is performed by the parallel scalable CFD software 
GASFLOW-MPI. Several turbulent models, including algebraic model, k-epsilon model, DES 
model and LES model, are employed and their computational performances are compared. 

This paper is organized as follows. The conservation equations in GASFLOW-MPI are introduced 
in section 2, and then, the outline of the turbulent models are described in section 3. The numerical 
results are presented and discussed in section 4. The conclusions are presented in section 5. 
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2.0 CONSERVATION EQUATION 

Volume equation 
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where u  is the fluid velocity vector, V is the discretized fluid control volume and b  is the control 
volume velocity surface vector incorporated in the simplified ALE methodology used in GASFLOW-
MPI. When =0b  the equations are in Eulerian coordinates, and when =b u  the equations are in 
Lagrangian coordinates. 

Mass equation 
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where  is the mixed fluid density. 

Individual species mass equation 
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where a  is the density of species a , 
aJ  is the mass diffusion flux vector of species a ,  and aJ  is the 

turbulent mass diffusion flux vector which should be modelled by the turbulent model. The turbulent 
turbulent mass diffusion flux vector is modelled using the gradient hypothesis, as Eq.(4), and 
calculated by employing a turbulent Schmidt number tSc , as Eq. (5). 
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Momentum equation 
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where p  is the pressure, σ  is the viscous stress tensor, g is the gravitational vector, and σ  is the 
Reynolds stresses term which should be modelled by the turbulent model. The Boussinesq hypothesis 
is employed to model the turbulent stresses, as shown in Eq.(7) and (8). S  is the the rate-of-strain 
tensor. Different turbulent models are employed to calculate the turbulent viscosity coefficient t . 
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Internal energy equation 
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where I  is the fluid internal energy, q  is the energy flux vector and q  is the turbulent heat flux term. 
The term q  is the second term which should be modelled by the turbulent model. The turbulent heat 
flux term is modelled using the similar method in the turbulent turbulent mass diffusion flux vector, as 
Eq.(10), and calculated by employing a turbulent Prandtl number Prt , as Eq. (11). 

 + = + t T  q q                                                                                                                                (10) 
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3.0 TURBULENT MODEL 

Four turbulent models are employed in this paper. Algebra model and k-epsilon model are RANS-
based turbulent model which are well-accepted in industry applications. Recently, the Large Eddy 
Simulation (LES) model and Detached Eddy Simulation (DES) model are developed and validated to 
capture more details of turbulence and flow features in applications of scientific research and 
engineering problems. 

3.1 Algebraic Model 

Algebraic turbulence model is also called as zero-equation turbulence model, which does not require 
the solution of any additional turbulence transport equations. The turbulent viscosity coefficient 

t  is 
calculated directly from the current flow variables, as shown in Eq.(12). As a result, history effects of 
turbulence may not be able to properly account in Algebraic turbulence model, such as convection and 
diffusion of turbulent energy. 

1/2=t C k l                                                                                                                                          (12) 

Where =0.05C  

3.2 K-epsilon Model 

K-epsilon turbulence model [18] is one of the most common model to simulate the mean 

characteristics of the turbulent flow. It is a kind of two equation models which gives a general 

description of turbulence by turbulence energy transport equation and turbulence dissipation rate 

equation, as shown in Eq.(13) and (14). The turbulent viscosity coefficient 
t  is calculated by 

Eq.(15). 

    t
k b

k

k k k G G
t


   



  
        

   
U                                                                 (13) 

     
2

1 2
t

k bC G G C
t k k

 



  
    



  
        

   
U                                           (14) 

 
2

=t

k
C 


                                                                                                                                (15) 

1C  2C  C  
k    

1.44 1.92 0.09 1.0 1.3 



4 

 

3.3 Detached Eddy Simulation Model 

Detached Eddy Simulation (DES) model is a kind of RANS/LES hybrid turbulence model [19]. The 

main feature of DES model is that it could switch between RANS and LES adaptively according to the 

local turbulent information. When the mesh size is fine enough to resolve the turbulent information, 

the DES model approaches to the LES model. In the opposite condition, DES model approaches to the 

k-epsilon model. In this paper, the k-epsilon based DES model is employed to model the turbulence 
behavior, as shown in Eq.(16) ~ (19). 
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Where C =0.65des
 

3.4 Large Eddy Simulation Model 

Different form the RANS model, most of the turbulent fluctuation could be resolved directly in LES 

and only the turbulence eddy at sub-grid scale should be modeled by sub-grid scale model. The 

Smagorinsky model is employed in GASFLOW-MPI to calculate the SGS turbulent viscosity due to 
its simplicity and practicality [20]. And the turbulent viscosity could be expressed by Eq. (20). 

2

t sL S                                                                                                                                                        (20)                                                                                                                                                                           

s sL C                                                                                                                                                             (21)                                                                                            
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Where C =0.1s                                                                                

4.0 NUMERICAL RESULTS 

4.1 Problem Description 

A series of experiments [17] were performed to characterize the mixing and dispersion of light gas in a 
partially confined space and to develop a database using for CFD validation. In this paper, a reduced 
scale two-car residential garage with interior dimensions of 1.5 m × 1.5 m × 0.745 m was employed, 
as shown in Fig.1. Due to safety concerns, helium was used instead of hydrogen in this experiment. 
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The helium was released into the compartment from the burner with specified velocity of 14.95 L/min 
for one hour and then 3.74 L/min for the next hour. It should be noted that the term burner used here 
only means a device that releases helium, but no chemical reaction occurs. In this experiment, the 
height of the burner was 207 mm and the exit diameter was 36 mm. And seven sensors were employed 
to measure the time-resolved helium volume fractions at different heights, which located at one 
horizontal location (35.5 cm from front and 40.5 cm from side) within the compartment, as shown in 
Fig.1. The vertical location of each sensor was also indicated in Fig.1. In a typical garage, there were 
always several small leaks especially near the garage door and windows which was represented by a 
hole on the wall in this experiment, as shown in Fig.1.   

According to the experiment configuration, the computational domain is set as following. There is 1.5 
m in the x direction and y direction, respectively, and 0.75 m in z direction. The uniform grid spacing 
is selected for z directions and a non-uniform mesh is employed for the x direction and y direction 
which are refined to resolve the turbulent information near the burner. The minimum mesh size in x 
and y direction is about 0.78 cm. And the mesh size reach the maximum value at the outer surface. 
The number of grid points is equal to 74 × 64 × 32 points in the x, y, and z direction, respectively.  

For the inlet boundary at the burner, the fixed velocity boundary condition is utilized according to the 
specified velocity in the experiment. Zero-gradient boundary, also called continuous boundary 
condition, is posed at the hole near on the wall. The no-slip boundary condition is employed on the 
other walls, as shown in Fig. 1. 

 

Fig.1 Experiment configuration [17] 

4.2 Results and Discussion 

Fig. 2 shows helium volume fraction distribution on a y-z plane passing through the middle of the 
burner at 2000 s where the k-epsilon turbulent model is employed. After released from the burner, the 
buoyant helium plume rose up to the ceiling and then propagated horizontally. The high helium 
concentration is built up close to the ceiling. The original air near the ceiling was compressed into the 
lower part and partial air was pushed out through the hole in the wall. Helium at the high 
concentration region also diffused to downward due to the helium concentration gradient. With the 
help of diffusion effect, there is a small helium volume fraction variation in the horizontal direction at 
the region far away from the plume. After the release phase (0~3600 s), the results indicated that the 
helium volume fraction distribution in the entire compartment became quite uniform due to the 
concentration diffusion, based on the data for 5400 s, as shown in Fig. 3. Only a small helium volume 
fraction gradient exists in the vertical direction under the action of gravity. 

In this section, experimental data of helium concentration at seven sensor locations is discussed firstly. 
And then the comparison between experimental data (symbols) and numerical predictions (lines) using 
four turbulent models is presented, as shown in Fig.4-Fig.7. For the experiment data [17], the sensor 7 
(black) located closest to the ceiling reaches a peak volume fraction of approximately 0.47 at the 3600 
s, when the helium flow is stopped releasing through the burner. A similar phenomenon is observed at 
the sensor 4-6 whose concentration profile shows a peak at 3600 s. While, the volume fraction at 
sensors 1-3 continues to rise even after the end of the release phase. It is because that the helium at the 
high concentration region diffuses towards the floor during the period between 3600 s and 7200 s. 
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Under the effect of the diffusion, the helium concentration measured by different sensor becomes quite 
uniform whose value is about 0.39 at 7200 s.  

  

Fig.2 Helium volume fraction at 2000 s (y-z plane) 

 

 

Fig.3 Helium volume fraction at 5400 s (y-z plane) 

Simulation results of four turbulent model agree well with the overall trend measured in experiments. 
The numerical results show that concentration profiles at sensor 4-7 reach a peak at 3600 s. The 
concentration profiles at sensor 1-3 continue to rise during the whole process. At 7200 s, the helium 
concentrations at different sensor becomes quite uniform whose value is consistent with the 
experimental value. However, there are two relative large differences between the experimental data 
and simulation results. One occurs in the sensor 7 during the period between 1600 s and 2000 s. The 
other one occurs at the sensor 1 during the period between 3600 s and 4000 s when the helium flow 
through the burner is stopped. The possible reason is that the uncertainty in the experimental 
measurement.  
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Fig.4 Algebraic turbulent model simulation results  
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Fig.5 K-epsilon turbulent model simulation results 
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Fig.6 DES turbulent model simulation results 
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Fig.7 LES turbulent model simulation results 

5.0 CONCLUSION 

In this paper, the Large Eddy Simulation (LES) model and Detached Eddy Simulation (DES) have 

been developed in 3-D CFD code GASFLOW-MPI to capture more turbulence information. In 

particular, the standard Smagorisky SGS model is utilized to resolve the turbulence behavior at 

subgrid scale in LES turbulence model. And the k-epsilon based DES model is employed to switch 

between RANS and LES adaptively. The validation of algebraic, k-epsilon, DES and LES turbulence 

model is performed in this paper by simulating the mixing and transport behavior of highly buoyant 

gases. Simulation results agree well with the overall trend measured in experiments conducted in a 

reduced scale enclosure. Furthermore, the numerical results also indicate that the newly developed 

LES and DES model could be used to analysis the turbulence behaviour in the hydrogen safety 

problems. In the future, the new developed turbulent models will be further validated and applied for 

the hydrogen safety analysis. 
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