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Role of Hydrogen Sensors for safe H2 deployment

• Provide critical safety factor
• Alarm at unsafe conditions
• Ventilation Activation
• Automatic shutdown

• Tool for modeling studies

• Bad things when sensors not used or misused
(extracted from the H2 Incidents database)

• Gaseous Hydrogen Leak and Explosion

– Lack of Hydrogen Detection Equipment

• Hydrogen Explosion and Iron Dust Flash Fires in 

Powdered Metals Plant

– No combustible gas monitoring or training 

• Two False H2 Alarms in Research Laboratory

– Nonspecific sensors alarmed twice ($10,000 fine)

– H2 specific sensors are not installed

• Mandated by Code

• NFPA 2 10.3.19.1 Dispensing equipment shall be provided with gas detectors, leak detection, and flame 

detectors such that fire and gas can be detected at any point on the equipment [52,2010, 9.2.14]

• NFPA 2 3.3.219.2.2 Gas Detection System. One or more sensors capable of detecting hydrogen at 

specified concentrations and activating alarms and safety systems. [52,2010]

• NREL C&S submitted a proposal to NFPA 2 providing guidance on sensor placement

Indoor Hydrogen Dispenser equipped 

with wall-mount and internal sensor

Sensor 
Deployment
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Performed under the auspices of the NREL-JRC MOA

DOE/NREL – JRC-IET MOA since 2010
(Synergize H2 Sensor Assessment Activity)

• Minimizing duplicated R&D efforts 

• International visibility and impact  

• Expanded capabilities and expertise

• Facilitate implementation of the 

hydrogen infrastructure  

• “Topical studies” 

• Educate H2 community on the proper use of 

sensors

• Outreach

• Joint publications, presentations 

NREL:  http://www.nrel.gov/hydrogen/facilities_hsl.html



H2 determination via oxygen sensor measurements

Background

• Applications                           

– Actual: Modeling of controlled releases 

– Proposed: Global Technical Regulation (GTR)

– Potential: General Deployment?

From the GTR (Hydrogen Fueled Vehicles)

(Section B.6.1.2: Post-Crash Concentration Test for Enclosed Spaces)

“Sensors are selected to measure either the build-up of the hydrogen 

or helium gas or the reduction in oxygen (due to displacement of air 

by leaking hydrogen/helium)”

Oxygen Sensors

Great for O2 Determinations

Vol% O2



H2 determination via oxygen sensor measurements

Basic Premise

• Basic Premise

– Sensor Response ≈ K * Vol% O2

– Vol% O2 = 21 – 0.21* Vol% Diluent

� 1 vol% [Diluent] suppress ambient 
O2 from 21 to 20.79 vol%

– Applicable for H2, He, (other)

• Advantages

– O2 Sensors--COTs, low-cost, simple

– Broad-Range, Linear response to O2

• Disadvantages

– Small drift => significant [diluent]

– Finite life (sometimes short)

– Non-selective (for diluent)



The Electrochemical (Galvanic) Oxygen Sensor

• Design Features

– Most common platform

– Used in published studies

– Low cost, easy to use, “zero power”

– Near-zero anaerobic response 

– SR ≈ K * Vol% O2

– Good for ambient oxygen levels 

• Design Limitations

– Finite operational lifetime 

– Restricted T range
Cathode: O2 + 2H2O � 4OHˉ

Anode: 2Pb + 4 OHˉ � 2PbO + 2H2O +4eˉ

Cell:  2Pb +O2� 2PbO



H2 determination via oxygen sensor measurements

Assessment

• Reviewed O2 Sensor Responses 
(for O2 and H2/He determinations)

– Impact of environmental parameters

– Short term stability and lifetime

– Deployment Scenarios

CONCLUSION

The use of O2 sensors to measure hydrogen/helium concentrations 

should be discouraged (and is not necessary)

Oxygen Sensors

Not Great for H2 Determinations

Vol% H2



Experimental Approach and Assessments

• Test System
(simultaneous deployment of sensors)

– 2 O2 sensors models
• O2-Sensor1:  Higher end, instrumented

• O2-Sensor2:  Low cost “sensing element” 

• 0 to 100 vol% O2 (optimal 0 to 21 vol%)

– TC hydrogen sensor (works for He)
• H2:  0 to 10 vol% (not a fundamental limitation)

• He:  0 to 14 vol%

– NREL/JRC Sensor Test Apparatus

• Protocols
– Synthetic air (21 vol% O2) and He diluent

– Linear Range/Short-term stability
• O2: 21 to 0 vol% or 21 to 19.85 vol% (typical) 

• He: 0 to 100 vol% or 0 to 5.5 Vol% (typical)

– Environmental Parameters (T, P, RH)

– Open System vs. Closed System 

– Operational Lifetime Considerations 



Oxygen Sensor calibration and use

• Typical O2 sensor operation

– 2 point calibration                              
air (21 vol% O2) and inert (0 vol% O2)

• Regulated T, P, RH

– Generate calibration curve
O2-Sensor 1:  Vol% O2 = 26.131 * SR – 0.0203  

O2-Sensor 2:  Vol% O2 = 1.8024 * SR – 1.2164 

Vol% O2 = 21 -0.21*Vol% Diluent

1 point calibration is often used

• Diluent (Dil) Determination
– Vol% Dil. = 100/21 * (21-Vol% O2)

• Dil = H2, He, H2O, N2, CH4, other

• Vol% O2 = 21 – 0.21* {Σ(Vol% Dil)i}

– 0.2 vol% O2 ≈ 1 vol% H2 or total Dil
• Small drift can have a big impact 



O2 Sensor Short Term Stability

• 21 to 18.2 Vol% O2 (0 to 13.4 Vol% He)

– Regulated T (25°C), P (1 bar), RH (dry)

• O2 Sensor behavior

– Small, near negligible drift in measured Vol% O2

– 5X greater impact on Vol% of diluent

– Stability varies with sensor model/type

• TC Sensor behavior

– Zero short term drift



Short Term Drift Impact on diluent determinations

• Previous calibration factor

– Long-term Drift observed in both sensors

• Oxygen Action Levels (OSHA)

– Typical Ambient: 20.9 vol%

– Confined Space Minimum: 19.5 vol%

• Hydrogen Action Levels

– LFL:  4 vol%

– Warning: 0.4 vol% (10% of LFL)

– Alarm: 1 vol% (25% of LFL)

• Impact of drift

– Systematic drift of +0.05 to +0.25 vol% O2

– Could lead to a false negative

– Due to aging

– Controlled T, P, RH  

• Impact of noise

– Limited ability to resolve O2 levels (A.R.)

– affects LDL for diluent (0.4 to 0.7 vol%)



Impact of Environmental Parameters (Pressure)

• O2 Sensor sensitive to PO2 NOT vol%

– PO2 and vol% numerically equal at 1 bar

– Common for many but not all  sensor platforms

– ΔP of 0.002 bar can be misread as 1 vol%  H2

• TC sensor response shown for comparison

– Negligible impact of Pressure

• O2 sensor dependence on PO2 significant 

for enclosed environments



H2 measurements via O2 displacement in enclosed spaces

GTR Section B.6.1.2: Post-Crash Concentration Test for Enclosed Spaces)

“Sensors are selected to measure either the build-up of the hydrogen or helium gas or 

the reduction in oxygen (due to displacement of air by leaking hydrogen/helium)”

Closed System (Region A and B)

A:  Air at 0.8 bar                                                              

21 vol% O2; PO2 = 0.17 Bar

B:  Pressurize chamber to 1 Bar with Helium

17 vol% O2; PO2 = 0.17 Bar

Open System (Region C)

C:   Purge chamber with air

21 vol% O2; PO2 = 0.21 Bar

• Gray Region: 20 vol% He

• No response for H2 /He release into closed system  (PO2 vs. Vol% O2)

• Direct manifestation of the O2 Sensor PO2 dependence

• TC range:  0 to 14 vol% He (not a fundamental limitation)

• GTR Recommendation is inappropriate



Support of DOT and the GTR

• GTR will be basis for FCV FMVSS

– Vehicles to be subjected to standard crash test

– H2 within vehicle must remain <4% following impact

– Failure to meet this requirement may result in recall

– Actual tests may be performed with helium surrogate

• Viability of TC sensor to meet GTR demonstrated

– Viable for both H2 and He (actual test was done with He)      

(survivability, sensitivity to He)

– Use of Oxygen sensor is not necessary nor reliable



Temperature Dependence of the Oxygen Sensor

• Temperature Range: 0 to 40°C

– Test Gas:  Air (21 vol% O2 / 0 vol% He)

– Comparable at different diluent levels

• Measured Vol% O2 ranged 20.1 to 21.9

– Transient impacts are greater

• Calculated Vol% Dil ranged 4.3 to -4.3

– Negative drift:  False alarm potential

– Positive drift:  False negative potential

• TC sensor minimal T dependence

– Results shown for 0 to 40°C                             

(can operate <-20°C to >80°C)

– Results shown for 0 and 5.5 vol% He



He/H2 Determination (TC vs. O2 Sensor)
Impact of Environmental Parameters (T, P, RH)

Environmental Impacts (O2 Sensors)
• Strong linear pressure dependences 

• Strong (near-linear) temperature dependence

• Varies with design

• Limited Temperature range (>0°C < 40°C)
• RH dependence (contribution to total diluent level)

Environmental Impacts (TC Sensors)

TC Sensor
• Negligible P, T, RH dependences 

• Board T range (from <-20 to >+80°)



Response (T90) and Recovery (T10) Times

T90 (s) T10 (s)

O2-Sensor1: 2.3 2.5

O2-Sensor2: 23.6 19.7 

TC 10.4 11.1

TC-2 4.0 4.0

Response Time (O2 vs. TC Sensor)



Indoor Monitoring—Long-term Stability

• Medium-long term monitoring

– Oxygen measurements accurate 

and stable

– Diluent level reach hydrogen 

warning and alarm levels



H2 measurements via O2 displacement

Hydrogen Sensor vs. O2 Sensor

O2 Sensor

Deployment
• Commercially Available 

– Sensing elements and instruments

• Low cost (for sensing elements)

Operational
• Easy to use

• Low Power

• Finite operational life (0.5 to 1 year)
– Cathode typically heavy metal

• Works for H2 and He
– No recalibration for different analytes

– Responds equally to all diluents

H2 Sensor (TC Platform)

Deployment
• Commercially Available 

– Sensing elements and instruments

• Low cost (for sensing elements)

Operational
• Easy to use 

• Low Power 

• Indefinite operational life
– Inert or noble material

• Works for H2 and He
– Different (but predictable) calibration factor

– Much lower sensitivity to other vapors 



H2 measurements via O2 displacement (cont’d)

TC vs. O2 Sensor

O2 Sensor

Analytical
• Amenable for H2 and He 

– Same calibration factor

– Nonselective to any/all diluents

• Environmental Impacts
– Strong T dependence

• Restricted range (0 to 40°C)

– Strong P dependence

– Strong to Moderate RH dependence

• Moderate LDL (>0.4 vol% Dil)

• Moderate A.R.  (>0.4 vol%Dil)

• Marginal Short Term Stability
– Small drift can lead to False alarm

• Response Time
– 2.3 sec (high-end only)

– Slower for most models

• Broad Range, but
– Indirect method (propagation of errors)

– Positive drift � negative [H2]

H2 Sensor (TC Platform) 

Analytical
• Amenable for H2 and He 

– Proportional calibration factor 

– Partial Selectivity

• Environmental Impacts
– Near-negligible T dependence

• Broad range (<-20 to >+80 °C)

– Near-negligible P dependence

– Near-negligible RH dependence

• Excellent LDL (~0.05 vol% H2)

• Excellent A.R.  (<0.05 Vol% H2)

• Good short term stability
– Some models show slow drift  

• Response Time
– T90 =  4 sec

– Typical T90 ≈10s  

• Broad Range
– Direct method (0 to 10%, 0 to 100% H2 /He)



Summary
General critique of approach

• Oxygen Sensors are very  good for oxygen determination

• Oxygen Sensors are NOT good for hydrogen monitoring
– Indirect method for Hydrogen/Helium

– Diluent ambiguity (H2, He, and OTHER)

– Propagation and amplification of measurement errors

– Marginal detection limit, H2/He accuracy = 20% (at best) of O2 sensor resolution

– Potentially misleading/inaccurate results

• Inappropriate for general deployment

• Not necessary for hydrogen or hydrogen surrogates 
– TC sensor works for hydrogen/hydrogen surrogates

– Other platforms (CGS, EC, MOX, PTF) appropriate for most applications

• GTR text on H2 determination via O2measurements inappropriate
– Recommendation to delete forwarded to U.S. GTR representative
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