

VENTED HYDROGEN-AIR DEFLAGRATION IN A SMALL ENCLOSED VOLUME

Rocourt, X.¹, Awamat, S.¹, Sochet, I.¹, Jallais, S.²

¹Laboratoire PRISME, ENSI de Bourges, Univ. Orleans, UPRES EA 4229, 88 bd Lahitolle, 18000 Bourges, France

²Air Liquide R&D, Les Loges-en-Josas, BP 126, 78354, Jouy-en-Josas, France

5TH INTERNATIONAL CONFERENCE ON HYDROGEN SAFETY SEPTEMBER 9-11, 2013 - BRUSSELS - BELGIUM

Objectives

Context

- Problem: Reduce green house gases, pollution and dependency on oil-based fuels
- Solution: Hydrogen, clean energy carrier (fuel cell)
- Risk: H₂ leak could fill a small confined volume in a part of a system and could ignite.
- Few studies at small scale: McCann (1985), CH₄/air, V=5.8 dm³ and 54.9 dm³
 - Sato (2010), C₃H₈/air, V=4 dm³

Objectives of the study

- Vented deflagration in a small confined volume (V=3.4 dm³) with a stoechiometric H₂/air mixture
- Evaluate models of literature for vented deflagrations at small scale

- ✓ Experimental setup
- ✓ Experimental results
- ✓ Molkov correlation
- ✓ Bauwens model
- ✓ Comparison between models
- ✓ Conclusions

Experimental setup

- Walls: Plexiglas
- \rightarrow H₂/air, ϕ =1, regulated by mass flow controllers
- ➤ Ignition by spark: E_n=122 mJ
- Pressure transducers PCB Piezotronics (±1.3%)
- ➤ High speed camera Phantom at 15000 fps

4

Experimental setup

- ➤ 3 ignition locations: center back wall front wall
- > 5 centered square vent areas: 225 cm², 81 cm², 49 cm², 25 cm² and 9 cm²
- Vent cover: thin polyethylene film

5

Experimental results

P_v: Relief pressure

P₁: Pressure generated by external explosion

P₂: Pressure generated by internal combustion (flame-accoustic coupling)

P₁ or P₂ dominates the internal pressure

Experimental results

Vent area (cm²)	K _v	Center ΔP ₁ (kPa)	ignition ΔP ₂ (kPa)	Back wal	Front wall ignition ΔP ₂ (kPa)	
225	1	3.1		5.0	$\Delta P_2 (kPa)$	1.3
81	2.8	11.0	2.5	25.0	(-)	2.5
49	4.6	13.0	10.0	27.8		6.6
25	9	<u>-</u>	78.9	<u>-</u>	61.5	40.0
9	25	-	278.4	1	180.8	196.4

> Powkas≤in4ctudedkimtal₂owbirchiedcomineatesrforaktord≥bby external combustion (center and back wall ignition) and back wall ignition

 $ightharpoonup P_2$ was not noticed for center ignition ($K_v=1$) and back wall ignition ($K_v \le 4.6$)

➤ For $K_v \ge 9$:

From tximal lign reimpressupesseme patall by internal combustion and by center ignition

➤ Maximal overpressure ↑ with K_v

 $V - Volume (m^3)$ $A_v - Vent area (m^2)$

Models of the literature

Actuel standard to predict internal overpressure during venting explosion:

NFPA 68 and EN 14994 (2007) based on Bartknecht's equation (1993).

Limitations:

- ightharpoonup 10 kPa < ΔP_{max} < 200 kPa
- ➤ initial pressure < 20 kPa
- > static vent activation pressure < 50 kPa
- → deflagration index K_G < 55 MPa.m/s
 </p>

Models of the literature

Models to answer these limitations:

Correlation

Molkov (1995)

Vent area

Enclosure volume

Sound velocity

Burning velocity

Turbulent Bradley number Deflagration Outflow Interaction

Specific heat

Products expansion ratio

Bradley number

Empirical coefficients

Bauwens (2010)

Vent area

Enclosure lenghts

Discharge coefficient

Sound velocity

Burning velocity

Lewis number Specific heat

External cloud radius

Flame area=f(ignition location),

Flame acceleration at the exit

External ∆p_{max}

Physic based model

Products expansion ratio

Universal gas constant

Gases temperature

Molar mass

Flame wrinkling coefficient

- Correlation of Molkov proposed in 1995, and updated several times 1999, 2001, 2008, 2013
 - Correlations applied with our experimental setup configurations

Ignition I agation	Absolute average deviations for all vent areas (%)							
Ignition Location	Molkov 1999	Molkov 2001	Molkov 2008	Molkov 2013				
Center	27	60	93	142				
Back wall	42	92	66	70				
Front Wall	133	185	361	434				

➤ Molkov 1999 correlates better than other updated versions with small scale experimental results

➤ Molkov 1999 has been chosen to be compared to Bauwens model

Molkov 1999

A	Molkov		Center ignition		Back wall ignition		Front wall ignition	
$\begin{array}{ c c }\hline A_{\rm V} \\ ({\rm cm}^2) \end{array}$	$\mathbf{K}_{\mathbf{v}}$	(1999)	Measured	Dev.	Measured	Dev.	Measured	Dev.
(CIII-)	,	$\Delta P_{max} (kPa)$	ΔP_{max} (kPa)	(%)	$\Delta P_{\text{max}} (kPa)$	(%)	$\Delta P_{\text{max}} (kPa)$	(%)
225	1	2	3.1	-35.5	5	-60	1.3	53.9
81	2.8	9	11	-18.2	25	-64	2.5	260
49	4.6	22	13	69.2	27.8	-20.1	6.6	233.3
25	9	71	78.9	-10	61.5	15.5	40	77.5
9	25	274	278.4	-1.6	180.8	51.6	196.4	39.5

- Correlation rather consistent with center ignition
- ➤ Overestimation for front wall ignition
- Not conservative for center and back wall ignition

Bauwens model

Assumptions for Bauwens model:

- ho Δ P₂ asymptotically approaches a constant volume explosion pressure P_{cv}= 811.7 kPa when Av \rightarrow 0 m² (Bauwens 2012)
- ➤ Initial flame velocity=laminar flame velocity $S_L=2.14 \text{ m.s}^{-1}$ (Le≈0.9 for stoechiometric H_2 /air mixture $-S_{u0}=0.9L_e^{-1}S_L$)
- ➤ Bauwens model: vented gas composed of 90% of products and 10% of reactants → 100% products considered in the present study
- New fitting value of $k_T=9.26 \text{ m}^{-1}$ (for ΔP_1) based on Bauwens (2010, 2011) and Chao (2011) experiments with a linear law.
- Flame wrinkling factor $\Xi_A = 1$ (for ΔP_2) to avoid higher overpressures generated at large scale ($S_u = \Xi_A S_L$)

Bauwens model – ΔP_1

des Systemes, Mecanique, E		Ce	enter ignitio	n	Back wall ignition			
$\mathbf{A}_{\mathbf{V}}$			ΔP_1 (kPa)		$\Delta P_1 (kPa)$			
(cm ²)	$\mathbf{K}_{\mathbf{v}}$	Measured	Bauwens	Deviation (%)	Measured	Bauwens	Deviation (%)	
225	1	3.1	4.9	58.1	5.0	8.6	72.0	
81	2.8	11.0	7.1	-35.5	25.0	19.9	-20.4	
49	4.6	13.0	8.3	-36.1	27.8	31.6	13.7	
25	9	-	10.1	-	-	66.3	-	
9	25	-	13.6	-	-	269.3	-	

- ➤ Deviations varying from -36% to 58% for center ignition
- ➤ Deviations varying from -20% to 72% for back wall ignition
- Not conservative for some configurations

Bauwens model – ΔP_2

indement d	$A_{ m V}$			Back wall ignition ΔP ₂ (kPa)			Front wall ignition			
$\mathbf{A}_{\mathbf{V}}$							$\Delta P_2 (kPa)$			
(cm ²)	$\mathbf{K}_{\mathbf{v}}$	Measured	Bauwens	Dev.	Measured	Bauwens	Dev.	Measured	Bauwens	Dev.
225	1		0.6	(%)		0.4	(%)	1.3	0.6	(%) -53.9
81	2.8	2.5	5.6	124	-	3.8	-	2.5		76
91	4.8	2.3	3.0	124	-	3.8	-	2.3	4.4	70
49	4.6	10	15.7	57	-	10.8	-	6.6	11.8	78.8
25	9	78.9	58.8	-26	61.5	41.6	-32.4	40	43.4	8.5
9	25	278.4	295.9	6	180.8	235	30	196.4	237.5	20.9

- Model more accurate for small vent areas K_v ≥ 9
- Not conservative for some configurations

Comparison between models - ΔP_{max}

ΔP_{max} modeled is compared to ΔP_{max} measured (ΔP_1 or ΔP_2)

Ignition I postion	Absolute average deviations for all vent areas (%)					
Ignition Location	Molkov 1999	ΔP _{max} Bauwens				
Center	27	26				
Back wall	42	33				
Front Wall	133	48				

- ➤ Bauwens model is globaly more accurate than Molkov 1999
- ➤ Results of both models are close for center and back wall ignition
- Molkov 1999 overpredicts pressure for front wall ignition but is conservative for this location

Comparison between models - ΔP_{max}

Consideration of ignition location given ΔP_{max} for each vent areas

Ignition I agation	Absolute average deviations for all vent areas (%)				
Ignition Location	Molkov 1999	ΔP _{max} Bauwens			
Locations for ΔP_{max}	31	26			

- The critical case is only considered for each vent area
- ➤Both models give ≈ similars results
- Bauwens model for K_v ≤ 4.6
- ightharpoonup Molkov model for $K_v > 4.6$

Conclusions

Experimental results

- Influence of the vent area and the ignition location on the internal overpressure for a small confined volume (H_2/air , $\Phi=1$, $V=3375~cm^3$)
- 3 pressures peaks: vent failure pressure, external combustion, internal combustion with flame-acoustic interaction
- Arr ΔP_{max} obtained with center ignition for $K_v \ge 9$ and back wall ignition for $K_v \le 4.6$
- $Arr P_2$ is dominant for small vent areas $(K_v \ge 9)$

✓ Molkov 1999 correlation and Bauwens model.

- Approximately similar results when comparing with experimental maximal overpressures (either P₁ or P₂) for center and back wall ignition
- Models results close to experimental data (Bauwens 26%, Molkov 31%) for a safe approach.

17

Thanks for your attention

Any questions?