A Comparative Study of Detonability and Propensity to Sustain High-Speed Turbulent Deflagrations in Hydrogen and Methane Mixtures

Logan Maley, Rohit Bhattacharjee, and Matei Radulescu
University of Ottawa
Canada

The Detonation Wave

 $2H_2 + O_2 + 3.5N_2$

- Supersonic combustions waves
- Very large over pressures
- Inherently unstable
- Complex Three dimensional structure

The Detonation Wave

To determine detonation limits, many researchers have used obstacle interactions to quench the detonation

 $2H_2 + O_2 + 3.5N_2$

Obstacle Interactions

 $C_2H_2 + 2.5O_2$ a) Po = 3 kPa 69% blockage b) Po = 6 kPa 87% blockage J. Chao – Ph.D. Thesis 2006

Detonation Quenching

 $C_2H_2 + 2.5O_2$

transition Radulescu & Maxwell JFM 2012

J.-S. Grondin J. H. S. Lee, SW 2010

Turbulent reaction zone structure closely coupled

J.-S. Grondin J. H. S. Lee, SW 2010 $\rm C_3H_8 + 5O_2$

This Study

...attempts to isolate the structure of the fast flame in a well controlled and reproducible fashion to clarify the behaviour

Experimental details

Settles' Large Scale Shadowgraph

Mixtures Investigated

An unstable detonation

 $CH_4 + 2 O_2$

A more stable detonation

 $2H_2 + O_2$

Seen here,

CH₄ + 2 O₂

Similar to,

 $2H_2 + O_2 + 3.5N_2$

Radulescu PhD Thesis, McGill 2003

Austin PhD Thesis, CalTech 2003

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_o = 6.9 \text{kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 6.9 \text{kPa}$

Velocity profile W ave velocity normalized by C J

$$2H_2 + O_2$$
 $P_0 = 17.2$ kPa

$$2H_2 + O_2$$
 $P_0 = 17.2$ kPa

Velocity profile W ave velocity normalized by C J

Why doesn't hydrogen accelerate like methane?

Chemical Kinetics

	Oxy-Hydrogen	Oxy-Methane
Post Shock Temperature	982.47 K	1106.47 K
Ignition Delay	4 497.1 us	15 720.0 us
Activation Energy (Ea/RTvn)	37.36	17.15

Chemical Kinetics

	Oxy-Hydrogen	Oxy-Methane
Post Shock Temperature	982.47 K	1106.47 K
Ignition Delay	4 497.1 us	15 720.0 us
Activation Energy (Ea/RTvn)	37.36	17.15

Chemical Kinetics can't seem to explain the discrepancies

Lets look into the hydrodynamics

Isolating the First Reflection

 $CH_4 + 2O_2$ $P_o = 8.3 \text{ kPa}$

 $CH_4 + 2O_2$ $P_o = 8.3 \text{ kPa}$

$$CH_4 + 2O_2$$
 $P_0 = 8.5 \text{kPa}$

Wave Waith Hydragen CJ

Discussion

CI 2011 - Mach and Radulescu have correlated low gamma and forward jetting

A hot stop in Oxy-Methane

 $CH_4 + 2O_2 P_0 = 8.4 \text{kPa}$

 $CH_4 + 2O_2$ $P_o = 8.4 \text{kPa}$

 $CH_4 + 2O_2$ $P_0 = 8.4 \text{kPa}$

 $CH_4 + 2O_2$ $P_0 = 8.4 \text{kPa}$

 $CH_4 + 2O_2$ $P_o = 8.4 \text{kPa}$

 $CH_4 + 2O_2$ $P_0 = 8.4 \text{kPa}$

 $2H_2 + O_2$ $P_0 = 10.3$ kPa

 $2H_2 + O_2$ $P_0 = 10.3$ kPa

Conclusion

The hydrodynamics causing the forward jet behind the Mach reflection are seen to be responsible for the fast flame acceleration leading to detonation ignition.

Oxy-Hydrogen has been seen not to display this hydrodynamics behavior as hydrocarbons to resulting in a smaller range of conditions for detonation ignition.

Thank you