

Cost Effective Inherent Safety Index for Polymer Electrolyte Membrane Fuel Cell Systems (Paper Id No 195)

Nordin, N.N
IKIP International College, Pahang, Malaysia
&

Ahmad, A., Mohamad, M. and Ali, M.W.
Institute of Hydrogen Economy, Faculty of Chemical
Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

Organisation of Presentation

- Introduction
- Modified Index m-PIIS
- Case Studies
- Benchmarking of the Modified Index using MMA process route
- Discussion of Results
- Conclusion

PEM FUEL CELL

- Zero emissions end product is just water & electricity
- High power density
- Oil independence through the use of H₂

FUEL CELL VEHICLES

GROWING NUMBERS

REPLACING Internal Combustion Engine

COMMERCIAL USE BY 2015

LOW EMISSION necello

RENEWABLE ENERGY SOURCES

EFFICIENT

PROBLEM - SAFETY ISSUES!!!

SAFETY INDEX

RISK Best known measure for safety (Heikkila, 1999)

INDEX

single numbers / tabulation of numbers correlated to the magnitude of hazards / risk

RISK INDEX

Extensively used in process industries

Describing, ranking or quantifying hazards

Enormous numbers proposed

Most Index for
Large Scale
Industries &
Complex reactions

Dow Index, Mond Index

Existing Index - Elegant & sophisticated

Industry prefer simpler method

(Gupta & Edwards 2002)

(Gupta & Edwards 2003)

Trevor Kletz (1970s)

- Intrinsic / Primary Prevention
- Common sense avoid, minimise, substitute & simplify
- Best considered in the initial stage (Heikkila, 1999)
- Cost effective

DESIGN PARADOX

Figure 1: Design Paradox (Source: Hurme & Rahman, 2005)

Comparing Index

Table 1: Comparison & Selection of Parameters for m-PIIS

Inherent safety parameters	PIIS (Edwards)	ISI (Heikkela)	i-Safe	m-PIIS
Heat of reaction		V	V	
Heat of side reaction		V		
Chemical interaction		V		
Reactivity rating			V	
Flammability	V	V	V	√
Explosiveness	V	V	V	√
Toxicity	V	V	V	1
Corrosiveness		V		
Inventory	V	V		
Yield	V		V	
Temperature	V	V	V	√
Pressure	V	V	V	√
Type of equipment		V		1
Process structure		V		

UTM UNIVERSITI TEKNOLOGI MALAYSIA

PURPOSE OF THE MODIFIED INDEX

- The purpose of the modified index is to indicate & estimate the inherent hazard of Hydrogen Fuel Cell System during early design stage
- The index address the probability of hazard occurrence

The index is to act as a simple, swift & cost effective guide

The parameters selected for the index are for the **probability analysis** and not for **consequence analysis**.

Parameter of m-PIIS

- PIIS as backbone for m-PIIS because
 - it has clear advantages over other indices in early design stage
 - Normally in early design stage most of the detail process information are not available
- The index is to suit the nature of hazard of PEM which the process is simple in nature, less complex & to be applicable at early design stage (where most data are not available)

UNIVERSITI TEKNOLOGI MALAYSIA

Parameter of m-PIIS

- Five (5) inherent safety parameters of m-PIIS are retained from the original PIIS
- Type of equipment parameter is taken from ISI
- <u>Scores</u> for flammability, explosiveness, temperature, and pressure and type of equipment are based on the work of *Heikkila*, 1996
- Score for the most dangerous equipment will be chosen as the indicator of the overall equipment safety level.
- Score for toxicity is based on the readily available NFPA ranking.
- Inventory & yield are omitted from PIIS because in early design stage this information are not readily available.

Calculation of m-PIIS

- Calculation of the index: worst case scenario
- Approach employed: most hazardous

condition that can appear

- Low index value: an inherently safer process
- High index score: less safe process.

Calculation of m-PIIS

CHEMICAL INDEX:

$$K_C = F + X + T_X$$

PROCESS INDEX:

$$K_P = T + P + S_{EQ}$$

$$m-PIIS = K_C + K_P$$

Flammability Score, F - Heikkila

Flammability	Scores
Non - flammable	0
Combustible (FP > 55°C)	1
Flammable (FP ≤ 55°C)	2
Easily flammable (FP < 21°C)	3
Very flammable (FP < 0°C & BP ≤ 35°C)	4
FP = Flash point BP = Boiling point	

Nordin, N.N, Ahmad, A., Mohamad, M. and Ali, M.W, 5th International Conference on Hydrogen Safety (ICHS2013), *Brussels, Belgium, September 9 – 11, 2013*

Explosiveness Score, X - Heikkila

Explosiveness (UEL – LEL) volume %	Score
Non explosive	0
0 – 20	1
20 – 45	2
45 – 70	3
70 – 100	4

Toxicity Score, Tx - NFPA

Classification	Description	Rating
Danger	May be fatal on short exposure. Specialized protective equipment required	4
Warning	Corrosive or toxic. Avoid skin contact or inhalation	3
Warning	May be harmful if inhaled or absorbed	2
Caution	May be irritating	1
	No unusual hazard	0

Temperature Score, T - Heikkila

Temperature (°C)	Scores
< 0	1
0 – 70	0
70 – 150	1
150 – 300	2
300.– 600	3
>600	4

Pressure Score, P - Heikkila

Pressure (bar)	Scores
0.5 – 5	0
0 – 0.5 or 5 – 25	1
25 – 50	2
50 – 200	3
200 – 1000	4

Equipment Safety, S_{EQ} - Heikkila

Equipment items	Score, S _{EQ}
Equipment handling non-flammable, non-toxic materials	0
Heat exchangers, pumps, towers, drums	1
Air coolers, reactors, high hazard pumps	2
Compressors, high hazard reactors	3
Furnace, fired heaters	4

Case Studies

Figure 2: High Pressure PEMFC system (GM Chevrolet Equinox FCV)

Figure 3: LH₂ – PEMFC system (GM HydroGen 3 FCV)

Figure 4: Low Pressure PEMFC system (Hyundai Santa Fe FCV)

Figure 5: On-board Methanol PEMFC system (DaimlerChrysler Necar 5 FCV)

Table 2: Summary of index values

Fuel cell system		Scores		V		Scores			m DIIC
	F	X	T _x	K _C	Т	Р	S _{EQ}	K _P	m-PIIS
GM Chevrolet Equinox	4	4	0	8	1	4	3	8	16
Hyundai Santa Fe	4	4	0	8	1	3	3	7	15
GM HydroGen 3	4	4	0	8	1	1	3	5	13
Daimler Chrysler Necar 5	4	4	*1	9	3	0	3	6	15

BUTM

- Chemical Index (K_c): almost uniform, K_c is the measure of hazards contributed by physical properties of the fuel
- For Necar 5, toxicity (T_X) score is assigned 1 due to the presence of methanol
- Process Index (K_P): show some variations, K_P is a measure of operating conditions
- Necar 5 has the highest temperature (T) score since it is operating at 300 - 400°C
- GM Chevrolet Equinox is assigned the highest pressure (P) score because the hydrogen gas was compressed to 700 bars

- GM HydroGen 3: lowest index value (m-PIIS = 13)
- DaimlerChrysler Necar 5: (m-PIIS = 15)
- Hyundai Santa Fe: (m-PIIS = 15)
- GM Chevrolet Equinox: highest index value (m-PIIS = 16)
- At early design stage, GM HydroGen 3 can be considered as inherently safest.

Benchmarking of m-PIIS using MMA Process Route (6 Routes)

Table 3: Correlation between m-PIIS, PIIS & ISI (using Excell)

Reaction step	Correlation	m-PIIS	Correlation	m-PIIS
	& PIIS		& ISI	
ACH ₁				
ACH ₂				
ACH ₃	0.957		0.739	
ACH ₄	0.557		0.733	
ACH₅				
ACH ₆				
C ₂ /PA ₁				
C ₂ /PA ₂	0.426		0.005	
C ₂ /PA ₃	0.426		0.865	
C ₂ /PA ₄				
C ₂ /MP ₁				
C ₂ /MP ₂	0.629		0.723	
C ₂ /MP ₃				
C ₃ 1				
C₃2				
C₃3	0.899		0.906	
C ₃ 4				
C4 ₁				
C4 ₂	1.000		0.982	
C4 ₃				
TBA ₁				
TBA ₂	0.971		0.817	
TBA ₃	0.371		0.317	
, =, ,3				

Figure 6: Comparison of index values for each Acetone Cyanohydrins (ACH) reaction steps

Figure 7: Comparison of index values for ethylene via propional dehyde (C2/PA) reaction steps

Figure 8: Comparison of index values for ethylene via methyl propionate (C2/MP) reaction steps

Index values for C2/MP reaction step 30 25 20 Index values 15 -m-PIIS 10 5 0 C2/MP1 C2/MP2 C2/MP3 Reaction step

Figure 9: Comparison of index values for Propylene (C3) reaction steps

Figure 10: Comparison of index values for Isobutylene (C4) reaction step

Figure 11: Comparison of index values for tert-butyl alcohol (TBA) reaction steps

- The modified index, m-PIIS is in agreement with established indices, PIIS (r value range of 0.426 to 1.00) and ISI (r value of between 0.723 and 0.982) respectively.
- It shows versatility with certain potential for future application in determining process routes selection
- m-PIIS does offer simplicity and swiftness through its features of six easily obtained and accessible parameters calculation

UTM UNIVERSITI TEKNOLOGI MALAYSIA

Recommendations

- m-PIIS has the potentials to be further developed into a more concise and comprehensive index with better estimation
- For future development, it is hope that m-PIIS shall be further refined and enhanced as a true representative index capable to assess and quantify the risks and hazards of the growing HFCV industry.

THANK YOU

nazatulniza@ikip.edu.my m.w.ali@cheme.utm.my