ICHS5 – 2013 September, Brussels, Belgium

S. Jallais¹, D. Houssin-Agbomson¹ B. Cariteau²

¹ Air Liquide, Claude-Delorme Research Center | 78350 Les Loges-en-Josas, France ² C.E.A. Saclay, D.E.N., S.E.M.T., L.T.M.F. | 91191 Gif-sur-Yvette, France

- I. Context
- II. One vent configuration
- III. Two vents configuration
- IV. Conclusions and perspectives

I. Context

Context of the study

H₂ Energy applications

- Design the system even in accidental conditions
- Define **safety barriers** (detection, calibrated orifice, EFV, low pressure alarms...)
- Define the **safety distances** and **recommendations** for internal and external (customers, fire brigades, ...)
- Obtain **permits from authorities**
- Need to dispose to accurate, simple, rapid and validated calculation tools for H2 build -up in confined areas

■ Validation of the Linden et al models (air based models) against numerous experimental data with hydrogen and helium releases in various configurations (volume, vents shape and area, ...).

II. One vent configuration

ONE OPENING NATURAL VENTILATION MODEL

Linden 1999 mixed regime model h (m)

Buoyancy Conservation

Steady State $S(m^2)$

$$X_{f} = \left(\frac{Q_{0}}{C_{D}S(g_{0}'h)^{\frac{1}{2}}}\right)^{\frac{2}{3}}$$

Characteristic filling time

$$\tau = \frac{V}{C_D S \left(X_f g_0' h \right)^{V_2}}$$

In transient:

$$\frac{dX^*}{dt^*} = 1 - X^{*\frac{3}{2}}$$

with
$$X^* = \frac{X}{X_f}, t^* = \frac{t}{\tau}$$

- Limitations:
 - Leak on the floor / Near cubic box

Steady state: independent of volume

No wind / no grids / no obstacles

Research & Development

 \blacksquare X(H₂) < 10 % \Rightarrow OK for safety studies

Comparison with Cariteau et al. (2011)

- CEA garage installation
 - 2.96 x 5.76 x 2.42 m \rightarrow 41 m³
 - Av = 38.5 cm^2 (circular vents)
- C_D adjusted to 0.254

In good agreement with Brown and Salvason (1962)

■ Bias # 8% and absolute average deviation # 15%

Comparison with Pitts et al. (2009)

- ¼ scale two-car rectangular garage
 - $1.5 \times 1.5 \times 0.75 \text{ m} \rightarrow 1.69 \text{ m}^3$

Time (s)

t (sec)

III. Two vents configuration

TWO-OPENINGS NATURAL YENTILATION MODEL

Linden (1999) displacement model

$$X = \frac{1}{C} \left(\frac{Q_0^2 h_i^{-5}}{g_0'} \right)^{\frac{1}{3}}$$

ith
$$\frac{S'}{H^2} = C^{\frac{3}{2}} \left(\frac{\xi^5}{1 - \xi} \right)^{\frac{1}{2}}$$

$$S' = \frac{C_D S_t S_b}{\left(\frac{1}{2} \left(\frac{C_D^2}{c} S_t^2 + S_b^2 \right) \right)^{\frac{1}{2}}} \qquad \xi = \frac{h_i}{H}$$

- Steady state: independent of V but H dependant
- Limitations:
 - No wind / no grids / no obstacles / near cubic box $C = \frac{6}{5}\alpha \left(\frac{9}{10}\alpha\right)^{\frac{2}{3}}.\Pi^{\frac{2}{3}}$
 - Leak on the floor / X(H₂) < 10 %
 - α = 0,1 (average value) \rightarrow not adapted to jets in principle

CEA GARAGE exp (un-published)

- CEA garage installation
 - \blacksquare 2.96 x 5.76 x 2.42 m \rightarrow 41.26 m³
 - \blacksquare Av = 38.5 cm² (circular vent)
- $C_t \& C_b # 0.5$

■ Good agreement → AAD # 9% ^{© (NL/min)}

Barley and Gawlick (2009)

■ NREL Garage

- 7.02 x 4.29 x 2.74 m \rightarrow 82.52 m³
- $Av = 787 \text{ cm}^2$

			1
EXIII	ŭ		

Case	Ys (m)	Q ₀ (NI.min ⁻¹)	%(He) exp.	%(He) calc.
P1	0.61	9.0	1.2	0.9
P2	0.61	20.2	2.0	1.5
P3	0.61	37.1	2.9	2.3
P4	0.91	11.3	1.5	1.0
P5	0.91	22.6	2.6	1.6
P6	0.91	17.0	2.7	1.3
L1	1.22	20.3	1.7	1.5
L2	0.61	37.3	2.4	2.3

Other validations

Swain et al. (1999)

- 2.99 x 0.74 x 1.22m → 2,7 m³
- \blacksquare Av = 232 cm²
- Calculated: 6.00 and 6.16% for H₂ and He
- Experimental : 5% for H₂ and He

Merilo et al. (2010)

- \sim 2,72 x 3,63 x 6,10m \rightarrow 60 m³
- \blacksquare Av (top) = Av (bottom) = 0,11 m²

NL/min	Exp H ₂ %	Calc H ₂ %
1720	22.8	24.9
164	5.8	5.2

Conclusions and perspectives

- Validation of the engineering models proposed by Linden to evaluate the H₂% in an enclosure naturally ventilated in case of leak :
 - For enclosure with a one or two openings
 - With leak on the floor and H2% < 10 %</p>
 - without wind effects, grids on openings, obstacles and for a near cubic box

With only one ventilation opening

- Well-mixed configuration with a homogenous gas concentration in the enclosure
- A good agreement is obtained between calculations performed with Linden method and recently published experiments
- Improvement for high H₂% could be achieved using the modified Molkov et al. method (see paper 152)

With two openings

- Displacement regime with formation of a homogenous upper layer
- A good agreement is also obtained between Linden based calculation method and recent experiments.
- Modifications of the models to take into account wind effects, leak location effects (see paper 161) and jet momentum effects could improve the prediction

ICHS5 – 2013 September, Brussels, Belgium

Application of "natural "ventilation" models to hydrogen build-up in confined zones

S. Jallais, D. Houssin-Agbomson B. Cariteau

Thanks for your attention

Simon.jallais@airliquide.com

