Ignition of Hydrogen Jet Fires from High Pressure Storage

Norbert Eisenreich, <u>Armin Keßler</u>, Conrad Wassmer

Schreiber, A., Klahn, T., Billeb, G., Deimling, L., Weiser. V. Sachsenheimer, K., Ehrhardt, W., Mehring, G., Langer, G.

ICHS-5

09.09.2013

European Commission, Bruxelles, B

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 1

Outline

- Description of release setup & behaviour
- Induction of spontaneous ignition
- Investigation of the combustion regime
- Conclusion

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 2

Storage Pipe / Release Configuration

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 3

Rupture Disk Arrangement with Microdetonator

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 4

Pipe pressure decay

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 5

High pressure H₂ release setup at Fh-ICT rocket test stand

Armin Kelsier | 1CHS-5 | 09.09.2013 | EC, Bruxeiles, B | Folie 6

Spontaneous Ignition in the nozzle

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 7

Real video of 260bar release experiment

Fraunhofer	
Versuch H2 07	
H2 Hochdrucka	ausströmung
HD Video Auslösedruck Ausströmrohr	260bar 10mm Durchmesser/ 100mm Länge
Ausstromronr	Tomm Durchmesser/ Toomm Lange

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 8

BOS images from different stages of the flame jet deployment which make the structures clearly visible

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 9

BOS Visualisation of Flame Propagation

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 10

IR images at different stages from the opening of the flame jet

Fraunhofer

Visualization of flame head: 1-D contraction from different images

100 bar initial pressure

260 bar initial pressure

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 12

Flame jet head profile decelerated movement by a drag / transient velocity

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 13

Contour plots of IR images at different stages from the opening of the flame jet

 \rightarrow Bright zone of flame head fully deployed @260bar

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 14

The position of the centroid of the bright zone vs. time moves similar to the advanced fronts of the jet heads

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 15

Equivalent radii for the deployment of the bright zone with linear rise of radii

Contracted images in direction of the height (100 bar) full scale & cut-off at half scale

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 17

Selected slices of the contracted images from 0.025s to 0.123s

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 18

Contracted images in direction of the jet propagation corresponding to the height of it

Fraunhofer

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 19

Selected slices of the contracted images in direction of the jet propagation from 0.025s to 0.123s

Conclusions

- Openings of high pressure tanks with a low volume related to the gas flow rate form transient hydrogen jets.
- The jet starts burning close to the opening at the outer shell and changes to a volume reaction forming a bright zone.
- Approximation by an expanding sphere like a spherical gas explosion.
- The centroid of the bright zone moves parallel to the jet head.
- Move downstream to nearly rest
- Deceleration with a nearly constant drag coefficient
- Separation from the jet cone at the end.
- Apparent flame velocity was found to be close to 20m/s.
- Emission of radiation dominated by this combustion regime
- Radiation estimation discussed in separate paper based on these results on the jet shapes
- → Presented by S. Knapp on Wednesday: Fires Session / Paper ID #104

Ignition of Hydrogen Jet Fires from High Pressure Storage

Thank you for your attention!

Norbert Eisenreich, <u>Armin Keßler</u>, Conrad Wassmer

Schreiber, A., Klahn, T., Billeb, G., Deimling, L., Weiser. V. Sachsenheimer, K., Ehrhardt, W., Mehring, G., Langer, G.

ICHS-5

09.09.2013 European Commission, Bruxelles, B

Armin Keßler | ICHS-5 | 09.09.2013 | EC, Bruxelles, B | Folie 22

