

Effects of Kinetics on Ignition of Hydrogen Jets

Bourgin, E., Yang, C., Bauwens, L., and Fachini, F.F. ICHS – September 9-11 2013

Motivation

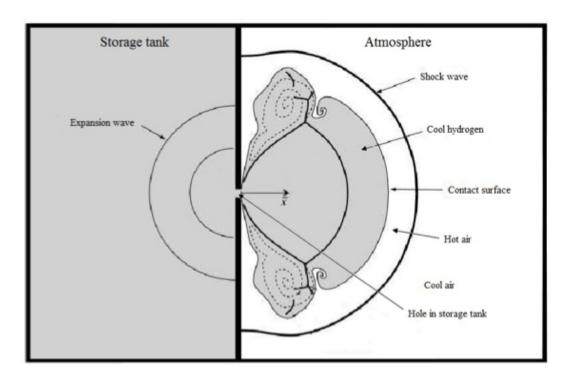
- + Hydrogen as a viable alternative fuel source
- + High pressurized hydrogen might lead to an accidental explosion
- + Ignition: safety concern
- + Rezaeyan (2011): Role of Lewis number for single step kinetics of hydrogen jet ignition

Background Information

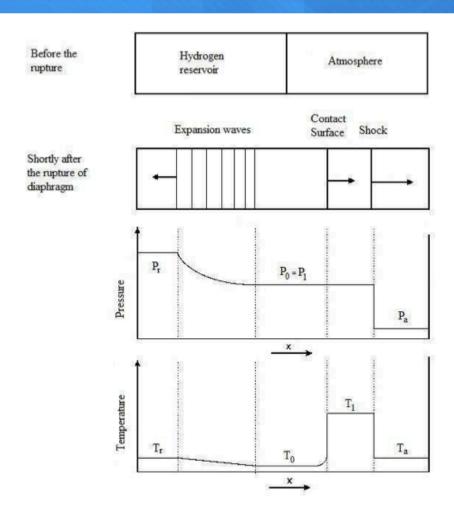
- + Astbury and Hawksworth (2007) postulated mechanisms:
 - + Reverse Joule-Thompson effect, electrostatic ignition, diffusion ignition, sudden adiabatic compression, and hot surface ignition.
- + Wolanski and Wojcicki (1973) first observed that in hydrogen leaks, auto-ignition can occur
- + High pressure leak:
 - + Pressurized gas discharges into surrounding atmosphere, driving a shock wave in front of the jet
 - + Shock is followed by a contact surface separating hot air from hydrogen (cooled by expansion)
 - + Mixing along contact surface may lead to ignition

Physical Model

- + Early stages similar to standard shock tube problem
- + Radulescu (2007)



Physical Model



Physical Model

- + Taken as 1-D
 - + Diffusion thickness small compared to curvature radius
- + Expansion term added to the shock tube model
- + Ideal gas, constant specific heats
- + All initial conditions are known
- + Expansion rate is known in time

Formulation

- + Chemical Kinetics:
 - + Start with arbitrary chemical reaction equation
 - + Arrhenius law used to determine rates of reaction

$$\kappa_j(T) = A_j(T)e^{-E_{aj}/(RT)}$$

- + 8 Species are considered in H2-O2 oxidation
 - + H, O, H₂, O₂, OH, H₂O, HO₂, H₂O₂

Formulation

- + Conservation laws:
 - + Mass, energy and species conservation
- + Heat and mass diffusion
 - + Fourier's Law of conduction
 - + Fick's law of diffusion
- + Lewis Numbers stays constant
- + Boundary conditions: Shock tube relations
 - + Density, pressure and temperature will drop due to expansion

Assumptions

- + Key Processes: Reaction, Diffusion, Expansion
- + Mach numbers small
 - + Momentum conservation → pressures approximately uniform
- + Diffusive length small
 - + Expansion is spatially uniform

- + Absence of chemistry
- + Conservation equations include: transient diffusion, advection, expansion
- + Time is scaled such that, initially, there is little chemistry
 - + Reduced to diffusion problem

- + Assume diffusivities are inversely proportional to the square of density
 - + Mass-weighted spatial coordinate

$$z=(
ho f)^{-1/2}\int_0^y arrho dy$$

+ Introduce similarity parameter

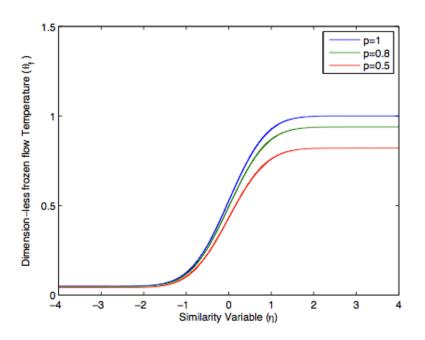
$$\eta = z/(2\sqrt{\tau})$$
:

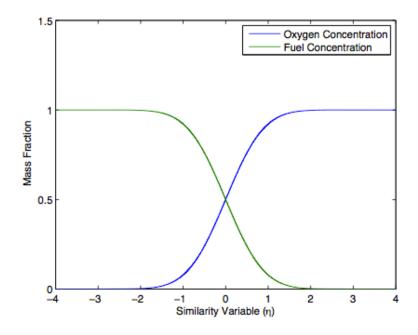
- + System reduces to one independent parameter
- + Except expansion term (non-homogeneous)

- + Solution is self-similar expressed using error functions
- + Solution to Frozen Flow

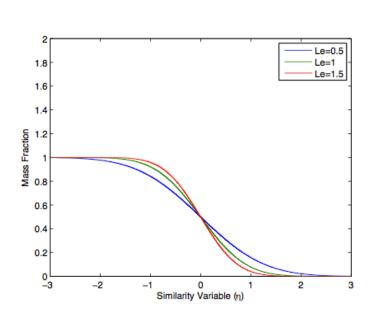
$$\begin{array}{rcl} y_{H_2fr} & = & \frac{1}{2} \left[1 - \textit{erf}(\eta \sqrt{Le_{H_2}}) \right] \\ y_{O_2fr} & = & \frac{1}{2} \left[1 + \textit{erf}(\eta \sqrt{Le_{O_2}}) \right] \\ y_{isfr} & = & 0 \\ \theta_{fr} & = & 1 + \frac{1}{2} (1 - \Delta_{\theta}) (\textit{erf}(\eta) - 1) \\ \varrho_{fr} & = & 1/\theta_{fr} \end{array}$$

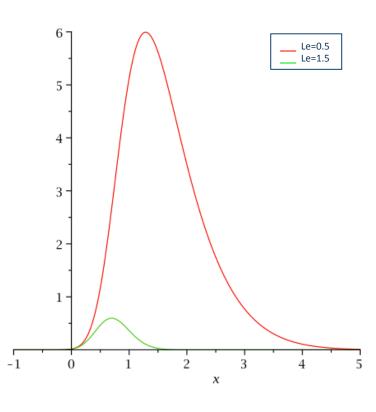
+ Results





+ Results





Perturbation

- + Perturbation added to frozen flow
 - + Accounts for small effect of chemistry
- + Rate magnitudes
 - + Initiation: slow
 - + Termination: fast
 - + Other steps: intermediate rate values

Chemical Kinetics

- + San Diego Mechanism (Boivin 2011)
 - + 21 reversible elementary reactions
 - + Reduced to 12

No. [15]	Step	A_f	n_f	E_f	A_r	n_r	E_r
1	$H + O_2 \rightarrow OH + O$	3.52×10^{16}	-0.70	71.42			
2	$H_2 + O \rightarrow OH + H$	5.06×10^{16}	2.67	26.32			
3	$H_2 + OH \rightarrow H_2O + H$	1.17×10^{9}	1.30	15.21			
4	$H + O_2 + M \rightarrow HO_2 + M$	4.65×10^{12}	0.44	0.0			
6	$HO_2 + H \leftarrow H_2 + O_2$				2.69×10^{12}	0.36	231.9
8	$H + OH + M \Leftrightarrow H_2O + M$	4.0×10^{22}	-2.0	0.0	1.03×10^{23}	-1.75	494.1
11	$HO_2 + H_2 \rightarrow H_2O_2 + H$	1.62×10^{11}	0.61	100.1			
12	$H_2O_2 + M \rightarrow 2OH + M$	2.62×10^{19}	-1.39	214.7			

Perturbation

+ Conservation of species k:

$$\frac{\partial y_k}{\partial t} - \frac{\eta}{2t} \frac{\partial y_k}{\partial \eta} - \frac{1}{4tLe_k} \frac{\partial^2 y_k}{\partial \eta^2} = \frac{1}{\rho} \Sigma \omega_{ijk}$$

+ Rates are written as:

$$\omega_{ik} = \pm C y_i^m y_j^n T^a \exp \frac{E}{RT}$$

- + Arrhenius
- + Perturbations are introduced of order $\epsilon = y_{il}/y_{ij} \ll 1$
- + Time is scaled by 1/y_{ij}

Perturbation

+ Conservation of species

$$\frac{\partial y_k^{(1)}}{\partial t} - \frac{\eta}{2t} \frac{\partial y_k^{(1)}}{\partial \eta} - \frac{1}{4Le_k t} \frac{\partial^2 y_k^{(1)}}{\partial \eta^2} = \frac{1}{\rho} \Sigma_i a_{ik} y_i^{(1)} + \frac{s}{\rho} + \frac{b}{\rho} y_H^{(1)} y_{OH}^{(1)}$$

- + Non linear
- + Equations are coupled through the first and last term on the r.h.s.

Numerical Solution

+ Splitting up equation: stiff and diffusion

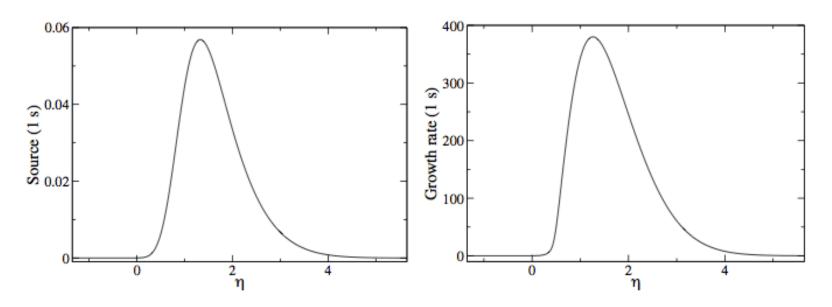
$$\frac{\partial y_k^{(1)}}{\partial t} - \frac{\eta}{2t} \frac{\partial y_k^{(1)}}{\partial \eta} - \frac{1}{4Le_k t} \frac{\partial^2 y_k^{(1)}}{\partial \eta^2} = \frac{s}{\rho}$$

$$\frac{\partial y_k^{(1)}}{\partial t} = \frac{1}{\rho} \Sigma_i a_{ik} y_i^{(1)}$$

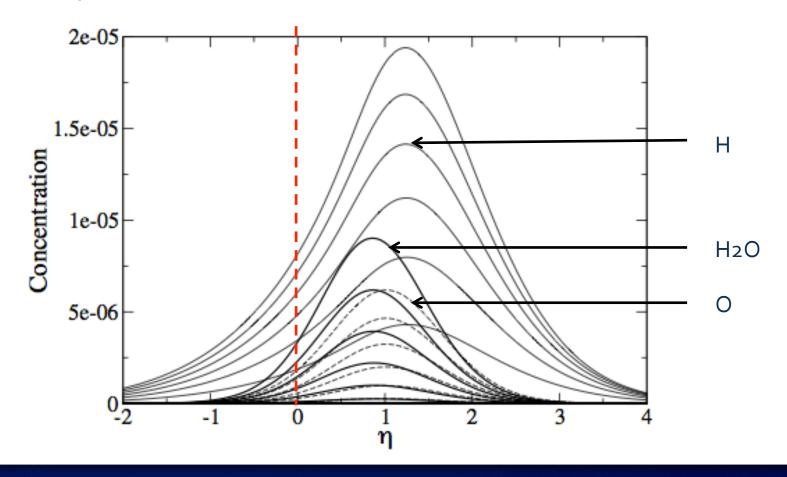
$$\frac{\partial y_k^{(1)}}{\partial t} = \frac{1}{\rho} \frac{b}{\rho} y_H^{(1)} y_{OH}^{(1)}$$

- + Stiff: project upon eigenmodes; termination: backward integration
- + Diffusion: source as $tY(\eta)$ + hermite polynomials for homogeneous part

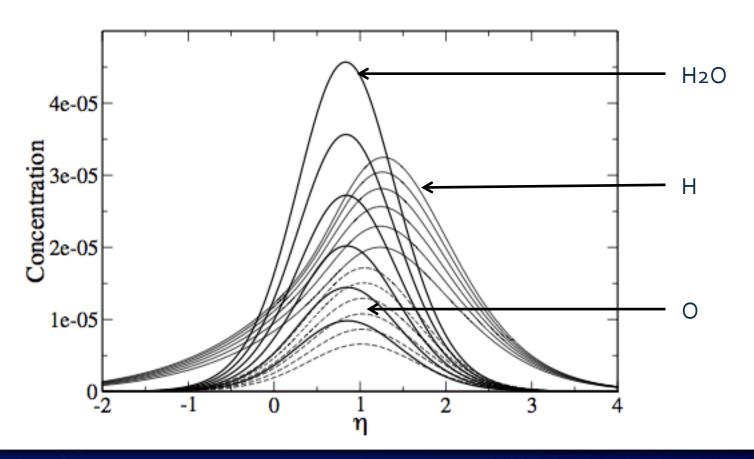
- + Source and single positive eigenvalue of matrix A vary with η
- Initiation and chain branching occurs well into the warm air region



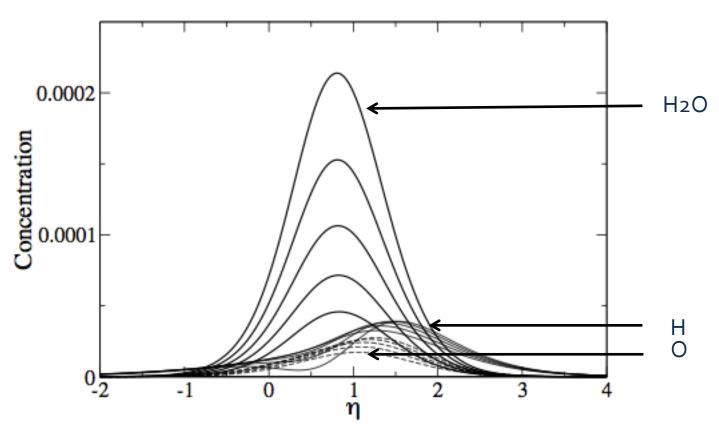
+ Early times (o.2 to 2.0 ms)



+ Intermediate times (1.25 to 2.5 ms.)



+ Late times (2.5 to 4.5 ms)



Analysis of Results

- + At later times initiation is no longer important
- + Water production increases with time
 - Water concentration at its peak now exhibits faster growth than the species released by initiation
- + As the perturbation values become large, the assumption that temperature changes have negligible effects will no longer be valid
- + Lewis number plays key role in initiation
 - + Hydrogen diffuses much more quickly than heat

Conclusion

- + Chemical reaction + diffusion problem
 - + Numerical solution (split algorithm)
- + Results presented for San Diego mechanism
 - + Not expected to be very different for other kinetic schemes
- Importance of the Lewis number confirmed from previous study
 - + Initiation, which is slow and stiff, occurs well within the warm air region
 - + Le<1: More likely to ignite