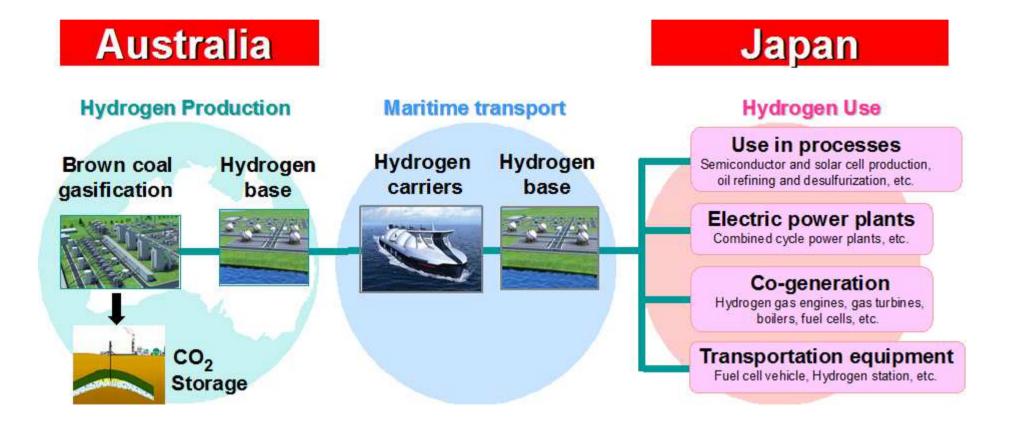
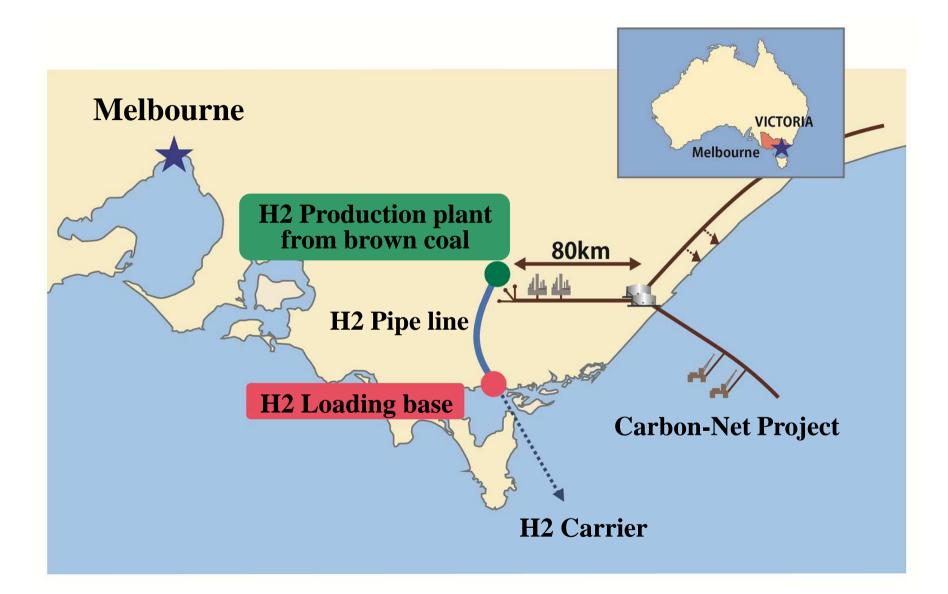
CO2-FREE HYDROGEN SUPPLY CHAIN PROJECT AND RISK ASSESSMENT FOR THE SAFETY DESIGN

September 9, 2013 Kawasaki Heavy Industries, Ltd. Suguru Oyama



Contents

- 1. CO2-Free Hydrogen supply Chain
- 2. Establishment of Hydrogen Safety System
- 3. HAZOP and Risk Assessment for Hydrogen Liquefaction Plant
- 4. Safety Design for Liquid Hydrogen Carrier



1.CO2-Free Hydrogen Supply Chain

Overview of commercial-scale HESC

Hydrogen Production Plant

Brown coal:14,200 t/day4,700,000 t/yearHydrogen:770 t/day246,000 t/yearCO2:13,300 t/day4,400,000 t/year

Hydrogen Loading Base

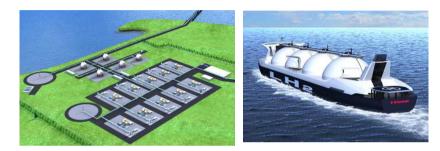
Hydrogen liquefaction: Capacity:770 t/day Hydrogen storage facility: 50,000 m³ x 5 tanks

Liquefied Hydrogen Carrier

Length:	315 m
Width:	56 m
Depth:	28 m
Required sea depth	: 11 m

Ship type:Pressure built-upNumbers of ship:2H2 carrier size:160,000 m³/shipBoil off Rate (BOR):0.2% / day

Annual delivery Qty: 238,500 ton/year-H2Service speed:16 ktsVoyage days:12.6 days/one way



Delivered hydrogen cost (CIF Japan)

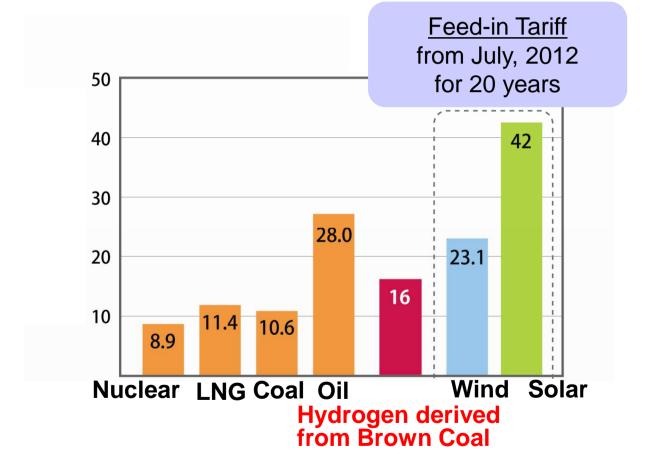
CIF cost ≒ 30 yen/Nm³

Carrier	9%
Loading base	11%
Liquefaction	33%
Production	29%
CO ₂ storage	10%
Brown coal	8%

Loading quantity: 238,500 t/year

Delivered hydrogen quantity 225,400 t/year

FCV (Fuel Cell Vehicle) : 3 million



Hydrogen power plant : 650 MW

Evaluation of power generation use in Japan

Power generation cost [yen/kWh]

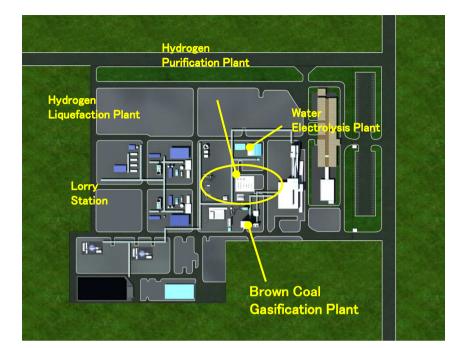
Result cost is more competitive than wind and solar.

The Next Stage

- It was found that <u>commercial-scale</u> HESC is technically and economically feasible and will deliver significant benefits both to Australia and Japan.
- However, before commercialization, technical demonstration, safety verification and demonstration of stable operation to potential investors are necessary with pilot-scale HESC.

Then as a next stage, **conceptual design of <u>pilot-scale</u> HESC with preliminary costs has been** conducted.

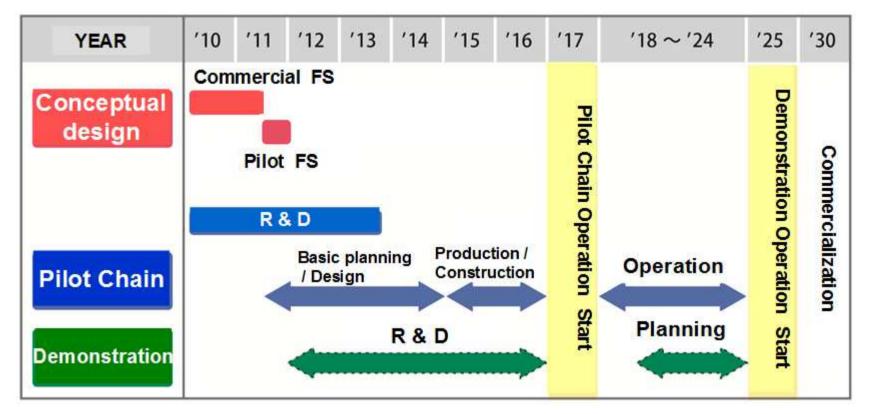
* HESC: Hydrogen Energy Supply Chain

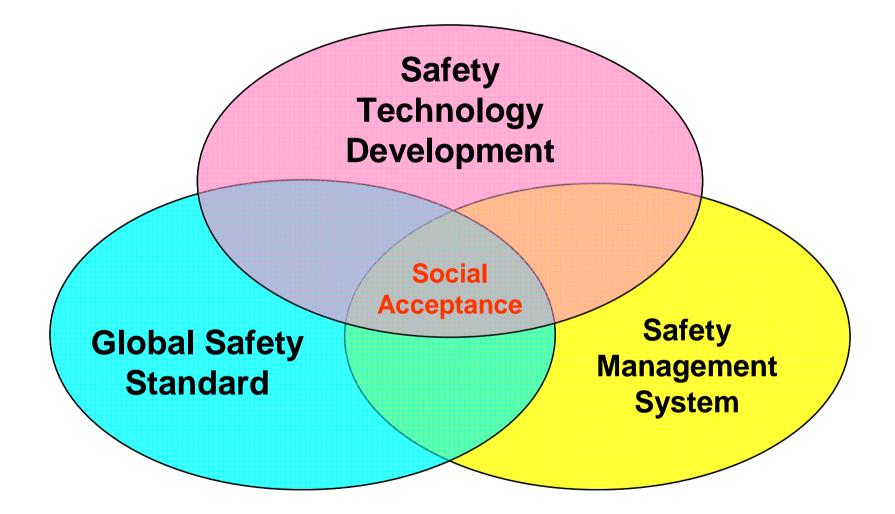

Pilot Scale Chain Main Specifications

PLANT SYSTEM	CAPACITY	NUMBER	REFERENCE		
Brown coal Gasification Plant and Hydrogen Refining Plant	5.5t/d-H2	1set	Annual Hydrogen Production Capacity 2,660 ton		
Electrytic Hydrogen Production Plant	2.9t/d-H2	1set			
Hydrogen Liquefaction Plant	4.2t/d-H2	1set			
Hydrogen Gas Turbine Generation Plant	4.2t/d-H2	1set	-		
Hydrogen Storage Facility	3,400m3	1set	Annual Cargo		
Hydrogen Carrier	2,500 m3	1set	Capacity 873 ton		

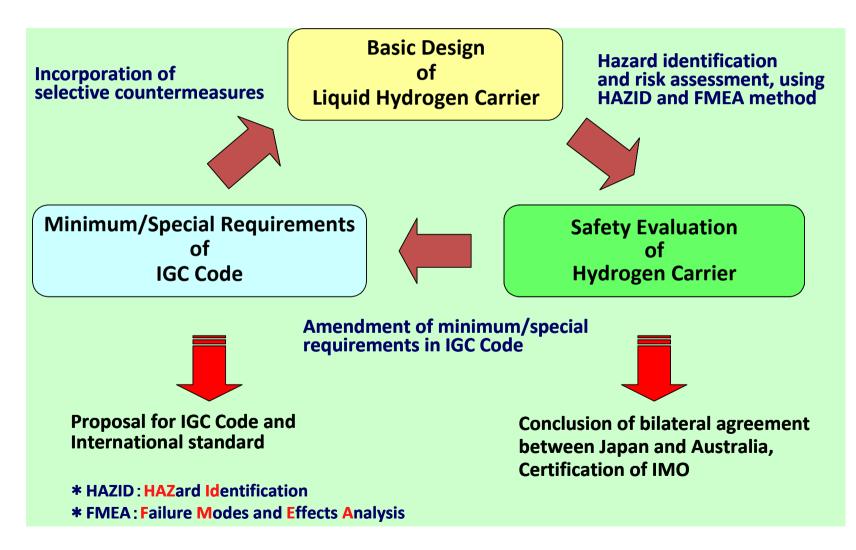
Pilot Scale Chain

Hydrogen Production Plant Hydrogen Loading Base Liquefied Hydrogen Carrier

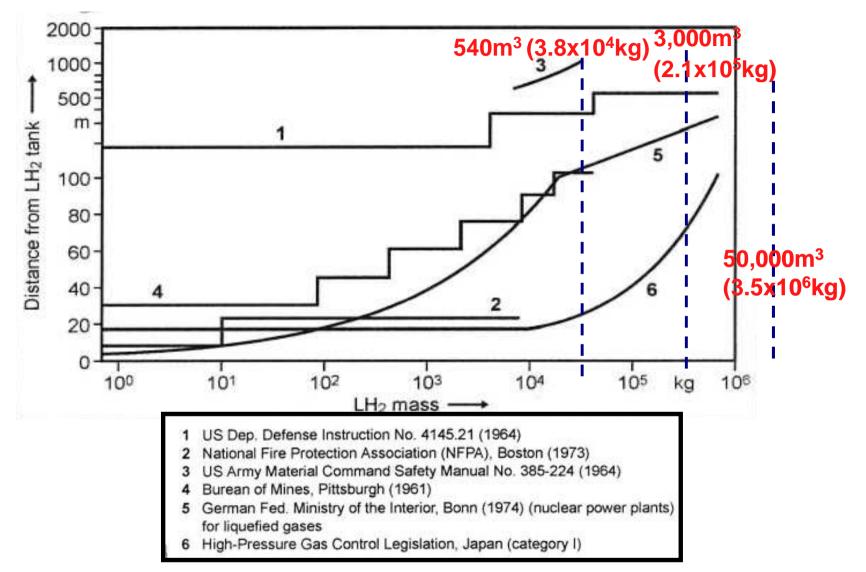



Schedule of Development

- 1) 2030 Commercialization
- 2) 2025 Demonstration Operation Start
- 3) 2017 Pilot Chain Operation Start
- 4) ~2013 Establishment of Technology, Funding and Consortium



2. Establishment of Hydrogen Safety System



Establishment of International Safety Standards (Liquefied Hydrogen Carrier)

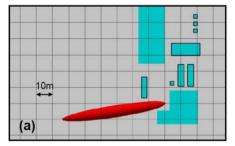
Safety Distance from LH2 Tank

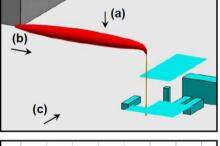
Reference: K. Verfondern, Figure 6-5 Safety Distances, Safety Considerations on Liquid Hydrogen, p53-54, 2008.

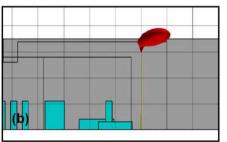
Development of Hydrogen Safety Technologies

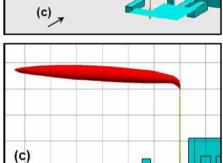
"NEXTH2" Program (Non-EXp bs ion Techno bgy for H2" Program)

W e,KAWASAKI is developing the indispensable hydrogen technologies to realize CO2 Free Hydrogen Utilization Society".

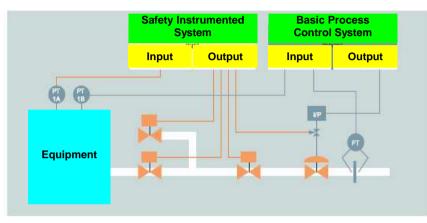

Through the best **exp bs ion proof techno bg ies for** hydrogen" in the world, we give you the safety and security in Hydrogen U tilization Society.


STEP1 Hydrogen Leakage Experiments

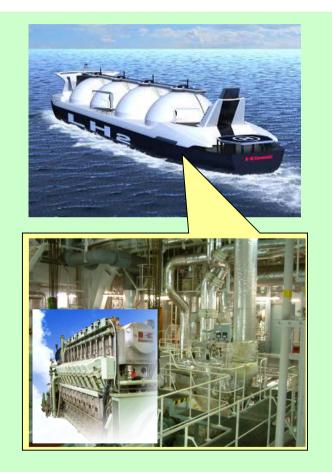



STEP 1	W e appreciate the hydrogen properties concerning safety through acquisition of the fundam ental data resulted from hydrogen leakage, ignition, explosion experiments.
STEP 2	W e analyze the hydrogen leakage, ignition, explosion phenom ena for safety thoroughly w ith computer sin ulation.
STEP 3	W e never cause a hydrogen exp bs on accident due to equipm ent failure, hum an error through thorough evaluations of system safety and re liab ility.
STEP 4	W e deve bp and produce the highly safe and reliable explosion proof devices and system s for hydrogen.

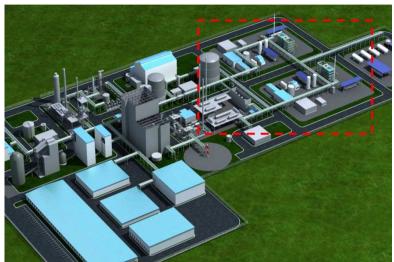
STE2 Computer Simulation



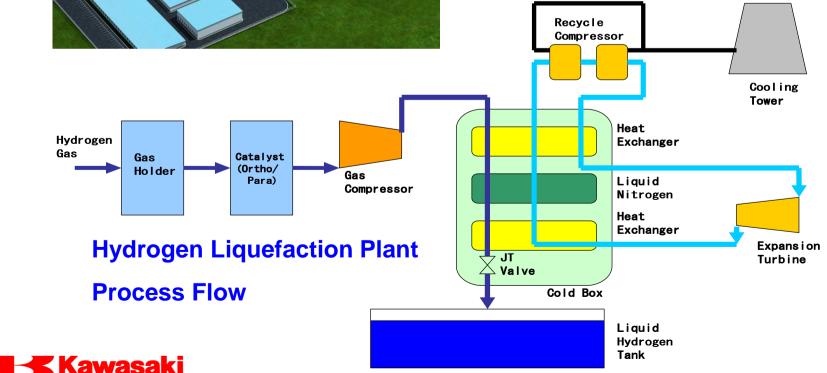
STEP3 Safety System and Operator Support System



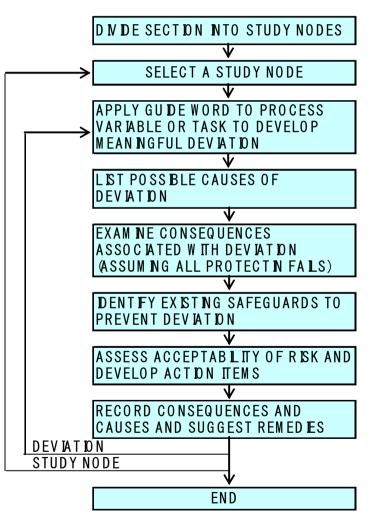
Safety System for Plants


Operator Support System for Plants

STEP4 The highly Safe and Reliable Explosion proof Systems


Explosion Proof for Liquid Hydrogen Carrier Propulsion System

Establishment of Safety Management System (Hydrogen Liquefaction Pilot Plant)


Specification of Hydrogen Liquefaction Plant

Numbers	2 units
Liquefaction Process	Hydrogen Claude Cycle
Liquefaction Capacity	5 tons/day/unit
Inlet Hydrogen Purity	>99.999 Vol %
Inlet Pressure	2.0 MPaG
Inlet Temperature	ambient temperature

Safety Design with HAZOP (Hazard and Operability Studies)

HAZOP Basic Procedure

Example: Deviation and Cause on HAZOP

Parameter	Deviation	Cause			
	no flow	control valve fails closed, pump fails suspension			
Flow	more flow	contorol valve fails open, control valve bypass full open			
	less flow	partial blockage of filter			
	reverse flow	backpressure high, down stream pressure high			
Pressure	high pressure	control valve fails closed, manual valve misoperation closed			
Tressure	low pressure	pressure control valve fails open, upstream piping blockage			
Temperature	high temperature	heating furnace abnormal combustion, cooling water no flow			
remperature	low temperature	heating furnace suspension, loss of heat medium			
	higher level	level control valve fails closed			
Level	lower level	level control valve fails open, less feed flow, discharge line open			
Composition	changes	feed material change, quantitative increase of ingredient material			
	impurities	generation of reaction byproduct, filter fenestration			

SIL Evaluation based on AIChE CCPS

NDEPENDENT PROTECTION LAYERS

₽L8	Community Emergency Response
₽L7	P bnt Em ergency R esponse
₽L6	Post-Release Physical Protection (e.g. Bunding)
₽L5	Physical Protection (e.g. Relief Devices)
₽L4	Safety Instrum ented System prevention action
₽L3	CriticalAams and Operator Intervention
₽L2	Basic Process ControlSystem, Operating Discipline/Supervision
₽L1	PROCESS DESIGN

HAZARD LEVEL NG

Risk Param	eter	C lassification			
	C 1	M nor	M nor njury		
Hazardous event Severity	C 2	Serbus	O ne death or perm anent injury to one or m ore persons		
	C 3	Extensive	Severaldeaths		
	W 1	Very Slight	<10 ⁻⁴ /year		
Event			$10^{-4} \sim 10^{-2}$ /year		
L ke lhood			$\geq 10^{-2}$ /year		

Total Number of Independent Safety-Related systems

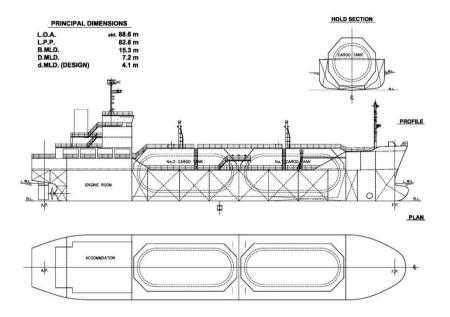
3		S IS : not required						
2		SIS NR SL1						
1		SIS NR	S∎_2					
LOW MED HIGH (W1) (W2) (W3)								
		EVENT LIKEL HOOD						
MINOR (C1)								

S IS : not required							
SIS NR SL1 SL2							
SL1 SL2 SL3							
LOW MED HIGH (W1) (W2) (W3)							
EVENTLIKELIHOOD							

SIS SL1 SL1 NR S∎1 S **L** 2 SL3 S L 3 SL3 SL3 HIGH LOW MED (W1) (₩2) (₩3) EVENT LKELHOOD

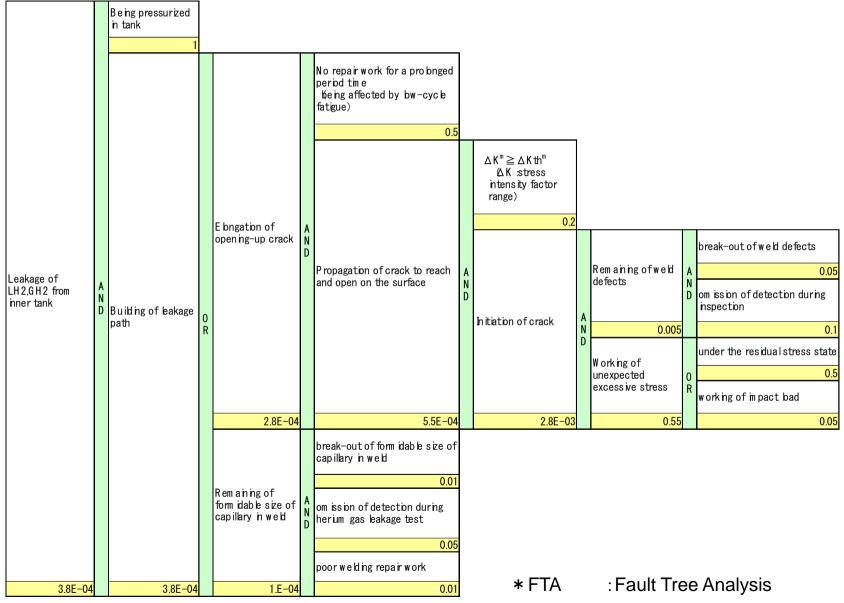
SERIDUS (C2)

EXTENSIVE (C3)


- * SIL : System Integrity Level
- * AIChE

Kawasaki

: American Institute of Chemical Engineering * CCPS : Center of Chemical Process Safety


Liquid Hydrogen Carrier Safety Design

Example1 : FTA (Inner Tank Leakage)

Example2 : FTA (Inner Tank Breakdown)

		hsufficient structural strength 0.001						* FTA :	Fa	ault Tree Analysis
								S luggish increase of heat flux due to gradual degradation of vacuum e		D iffusion of H2 gas in vacuum e cham ber derived from extraction of absorbed gas or bakage from capillary
								degree	N D	0.5
										hcompetency of vacuum e pum p
								0.25		0.5
						Continuous and/or rapid	R P	Rapid increase of heat flux due to hasty degradation of vacuum e degree		D iffusion of H2 gas in vacuum e cham ber due to bakage from through wall crack of inner tank
						pressure rising of BOG			0 R	3.8E-04
										D iffusion of N2 gas in vacuum e cham ber due to bakage from through wall crack of outer tank
								3.8E-04		3.5E-10
				Pressure rising of BOG in tank	A N D			Building of evaporation layer on the LH2 surface & tratification) due to extension of long period	0 R	S trand ng
B reakdown of inner tank	0	H igh pressure								0.05
	к	exceeding the	A					detention		Long period anchorage
		structural strength of tank	N D			0.400)	0.15		0.1
							0	M alfunction of pressure sensor		
						hcompetency of H2 incinaretor		0.01		
								Malfunction of CPU		
								0.0001		
								Malfunction of flow control valve		
								0.05		
								Malfunction of incinerator body		
				0.064		0.16)	0.1		
				hcompetency of No.1 pressure relief valve					•	
				0.01						
				hcompetency of No.2	1					
0.001				pressure relief valve						
0.001		6.4E-06		0.01]					

Thank you for your attention !

