Hydrogen Bubble Dispersion and Surface Bursting Behaviour

J Ingram, A Averill, P Battersby, P Holborn and P Nolan

Explosion and Fire Research Group London South Bank University

University

Why Study Hydrogen Bubbles? (1) Sources

- H₂ is a concern for nuclear waste storage & decommissioning operations.
 - Hydrogen produced in liquids and sludges
 - Corrosion of metals particularly Mg
 - Radiolysis
- Release in form of bubbles
 - Small bubbles often slow steady releases
 - Large volumes, 100's L disturbance of sludge beds or containers

University

Why study hydrogen bubbles? (2) Concerns

- Hydrogen releases could form flammable atmospheres and be ignited.
- Typical Questions:
 - Extent of flammable region above surface
 - How quickly is it dispersed
 - Build up in roof space possible?
- Data useful for model development and validation

Visualising hydrogen in air

- Rapid, transient phenomenon
- Non-invasive measurement
- Simultaneously at different positions
- Schlieren photography
 - Available
 - Concentration gradient
 - Reasonable sensitivity H₂-air mix from pipe visible at 4% H₂

Experimental apparatus

- Toughened glass tank
- Bubbles from
 - Various size submerged pipes
- Schlieren system
- Second camera
 - Bubble sizing (with retractable rod)
 - Rise time and speed
 - Filming bursting process

University

 $2~cm^3~H_2$ bubble rising to a water surface length of video clip 600 ms

Schlieren imaging of 2 cm³ bubble burst length of video clip 600 ms

Visible extent of plume

Visible schliere and flammability

- Can visualise 4% H₂ but schliere depends on conc.
 Gradient
- Deliberate ignition bubble burst
- Modified, orthogonal apparatus
- Confirmed visible extent greater than ignitable extent

Igniter Height, mm	Ignition Frequency
40	22/31
53	6/30
65	0/27

 2.5 cm^3 bubble, visible extent ~ 10 cm

Bubble burst mechanism

- Experiments undertaken to visualise bursting in more detail.
- Same apparatus, but higher frame rates
- Gain better understanding of bursting process
 - Explore modelling approaches
 - Aerosol production

1.5 cm³ bubble – rear burst length of video clip 12 ms

 $1.5~cm^3~bubble-side~burst\\ length~of~video~clip~8~ms$

12 ms video clip

60 ms video clip

Normal and schlieren video of same 1.5 cm³ bubble

University

Discussion- Flammable extent of plume

- Ignition experiments indicate limit of visible schliere bounds flammable extent
- Obtained data for visible schliere limit vs bubble size
- Compared with Sellafield in-house model buoyant expanding sphere
 - Visible limit ~ 50% model prediction

University

Discussion - Bubble bursting behaviour

- Burst mechanism:
 - Appearance of bubble
 - Nucleation of small tear/hole
 - Rapid retraction of film (a few ms) gives rim instability and formation of ligaments/droplets.
 - Some hydrogen is forced out of hole as bubble collapses, but much remains in place
 - Variation in nucleation site and initial amount of dispersion
- Modelling OpenFOAM
 - Able to reproduce some of the behaviour but computationally very demanding

Conclusions

- Schlieren & deliberate ignition used to estimate extent of flammable plume
- Significant momentum imparted to hydrogen
 - Simple Sellafield models conservative
- Bubble bursting complex
 - Very fast ~3 ms, films peels back from initial hole, rim formation
 - Variation in nucleation site, time to collapse and initial dispersion

University

Further Investigations – Larger Releases

- New apparatus commissioned
- Lens and grid schlieren system
 - Visualise much larger area
 - Large diameter optics not required
 - But reduced sensitivity
- Used to visualises H₂ releases up to 22 litres in ~ 1m³ volume

University

14 Litre Hydrogen Release

time = 0.60 s

University

14 L Hydrogen Release

LSBU Experiment

time = 1.33 s

Job=010105. Var=FMOLE (m3/m3). Time= 1.330 (s).

Thank You
For
Listening