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Some researchers have reported.

Not enough discussion.



Research history
Wolański and Wójcicki (1973)

Investigate the mechanism of the diffusion ignition of a combustible gas
flowing into an oxidizing atmosphere.

Tanaka et al. (1979)
Confirm the similar ignition.

Uejima et al. (1998)
Discuss the turbulent effects on the ignition.

Liu et al. (2005), Bazhenova et al. (2005)
Calculate the hydrogen jet coming out to air at the room temperature.

Dryer et al. (2007)
Show the unique ignition potentials for pressurized releases of hydrogen.

Golub et al. (2008), Mogi et al. (2008), Yamada et al. (2008)
Show the relationship between the pressure and the length of tube.

Xu et al. (2008)
Discuss an auto-ignition would initiate inside the tube at the contact surface
due to mass and energy exchange.

Sandia National Laboratories (2003~)
Investigate the hydrogen Release behavior. 3



Background and object

High pressure tanks are often used to store hydrogen
in many practical cases (e.g. fuel cell vehicle). If an
accidental release of high pressure hydrogen occurs, a
strong shock wave would be generated and might lead
to an explosion.

High pressure hydrogen leaks are one of the top
safety issues. The object is to clarify the physics and
mechanism of high pressure hydrogen jet ignition.

4

HONDA
FCX CLALITY

H2 TANK
171 L

35 MPa



Numerical method
An auto-ignition of hydrogen from a tube attached to a high
pressure reservoir tank is calculated with the direct numerical
simulation (DNS).
Governing equations

Two dimensional compressible Navier-Stokes equations
Conservation of mass, momentum, energy and chemical species
Equation of state

Discrete form
Finite different method on the cylindrical coordinate system

Scheme for convection term
second-order Explicit Harten-Yee Non-MUSCL modified-flux type TVD

Chemical reaction
9 chemical species (H2, O2, O, H, OH, HO2, H2O2, H2O, and N2)
18 elementary reactions (Petersen and Hanson, 1999)

Transport coefficient
Lennard-Jones intermolecular potential model
Wilke’s empirical rule for the mixture
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Condition

# L [mm] r x z [mm] Grid

1 0 40×36 3,600,000

2 2 40×38 3,800,000

3 10 40×46 4,600,000

4 20 40×56 5,600,000
z
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Grid condition

Investigate the effect of tube length.

Outside ignition

Inside ignition
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“L” extends gradually.

Δr = Δz = 20 μm

Δr = 5 μm, Δz = 10 μm Smaller size.



Outside ignition
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The shock wave heats air to a high temperature over 2000 K
which is enough energy to induce an auto-ignition of hydrogen.
Mixing of hydrogen and air is promoted by vortices generated
around the side area. This mixture layer might lead to a strong
chemical reaction.

H2

From the left hand side high pressure hydrogen goes through a
thin tube, and spouts into air.



4.63 ms 13.4 ms 22.1 ms 30.9 ms

4.59 ms 13.3 ms 22.1 ms 30.8 ms
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Short tube case
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Vortices are important factor for the outside ignition.

Semi-spherical Vortices



17.7 ms

26.5 ms

35.0 ms

43.5 ms

28.6 ms

37.2 ms

45.8 ms

54.1 ms

9

Long tube case
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The shock wave decays and many vortices are generated.
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Maximum temperature history
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Fluctuation

It seems that a chemical reaction is maintained for a while.



H2
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Inside ignition
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Temperature
T [K]
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It is expected that the complicated flow
structure mixes hydrogen with air.
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Pressure
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Vortices and whiskers
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Vorticity & Mass fractions
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When these vortices grow more, an effective mixing
of H2 and O2 might be caused.

Vortices
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Outside ignition:
Many vortices are generated when the shock wave exit the tube. It
seems that the vortices are important factor for the outside ignition.
The longer tube, which has enough space to mix hydrogen with air,
tends to make more complicated flow structure. Therefore, to
reduce the outside ignition, it is necessary to reduce the space
near the exit.

Inside ignition:
The shape of the contact surface is changed significantly. The
complicated flow structure with some vortices and whiskers is
formed behind the contact surface. This can cause an effective
mixing, and then an inside ignition may occur. To reduce the inside
ignition, we need to understand this phenomenon better.
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Conclusions


