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Pressure vessels and pipelines are important 
components in the hydrogen energy infrastructure

• Current examples:
– Cr-Mo ferritic steels
– <45 MPa H2 gas
– <1 pressure cycle/day

• Current examples:
– C-Mn ferritic steels
– <15 MPa H2 gas
– static pressure

Evolving H2 containment components will operate 
outside windows of current service conditions



Fatigue crack growth aided by hydrogen 
embrittlement can dictate component life

Maximum number of pressure cycles 
must be defined for H2 components
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American Society of Mechanical Engineers (ASME) 
developed design method for H2 pressure vessels

• Article KD-10 in Section VIII, Division 3 of Boiler and 
Pressure Vessel (BPV) code

– “Special Requirements for Vessels in High Pressure 
Gaseous Hydrogen Service”

– Mandatory for seamless vessels with H2 pressure > 41 MPa 
and welded vessels with H2 pressure > 17 MPa

– Allows H2 pressure up to 100 MPa

– Design method also considered for H2 pipelines

– Calculate maximum number of cycles by coupling 
fatigue crack growth data with structural analysis



Fatigue crack growth rate must be measured in 
high-pressure hydrogen gas 
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Fatigue crack growth rates measured for 
Cr-Mo steel SA-372 Gr. J in 100 MPa H2 gas

Data sets in high-pressure H2 are rare, in part  
because measurements are complex
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Fatigue crack growth rate data enable determination 
of maximum number of pressure cycles
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Design life depends on both fatigue crack growth 
rate response and component features

number of pressure cycles
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Example: crack depth vs number of cycles 
calculations for three component variations



Fatigue crack growth measurements for component 
design must consider environmental similitude

Environmental similitude affected by variables 
such as H2 pressure and load-cycle frequency
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Summary

• Fatigue crack growth aided by hydrogen embrittlement can 
dictate service life of H2 containment components
– Maximum number of pressure cycles must be defined

• Maximum number of cycles calculated by coupling fatigue 
crack growth data with structural analysis
– Framework established in ASME codes

• Measurements of fatigue crack growth rates in high- 
pressure H2 gas in progress
– Initial data for Cr-Mo steel SA-372 Gr. J in 100 MPa H2

– Must address effects of load cycle frequency and wave 
form on fatigue crack growth rates in H2
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