Experimental Study of Hydrogen Release Accidents in a Vehicle Garage

Erik Merilo
Mark Groethe
James Colton
Seiki Chiba

Poulter Laboratory
SRI International

3rd International Conference on Hydrogen Safety
16 September 2009
Ajaccio, Corsica
Outline

• Objective and Approach
• Experimental Facility
• Instrumentation
• Test Results
 – Mechanical Ventilation Configuration
 – Natural Ventilation Configuration
• Summary and Conclusions
Acknowledgments

These studies were performed for the Institute of Applied Energy (IAE) and administered through the New Energy and Industrial Technology Development Organization (NEDO) as part of the “Establishment of Codes & Standards for Hydrogen Economy Society” program, with funding from the Agency for Natural Resources and Energy (ANRE) in the Ministry of Economy, Trade and Industry (METI) of Japan.
Objective and Approach

Objective

- Examine the risk and hazards involved with the deflagration of hydrogen releases in a one-car garage.

Approach

- Hydrogen release rates ranged from 0.88 kg/hr to 9 kg/hr.
- Hydrogen releases lasting 20 to 40 min. were studied using natural ventilation or mechanical ventilation (0.1 m³/s - 0.4 m³/s, 6 - 24 enclosure volumes per hour).
- The hydrogen concentration levels were measured, followed by the ignition of the flammable gas mixture.
- Flame speed and overpressure were measured to characterize the resulting deflagration.
- Two tests were performed with a vehicle inside the garage using the natural ventilation configuration.
Garage Facility and Release Configuration

- Inside dimensions: 6.10 m x 3.64 m x 2.72 m
- The facility was constructed of reinforced steel.
- The hydrogen release rate and ventilation rates were nearly constant.
- Spark ignition modules were located on the ceiling and next to the release.

Garage

![Diagram of garage facility and release configuration]

- Commercial Hydrogen Cylinders
- Regulator
- Thermal Mass Flowmeter
- Sparks 1-3
- Sparks 4-6
- Ventilation Duct
- Nozzle: critical flow venturi
- Spark Ignition Modules
Ventilation Configuration

Natural Ventilation

Sized to meet upper and lower opening recommendations specified in the 2002 ICC Final Action Agenda, 0.046 m2 open area per 28.3 m3 of garage volume (½ ft2 per 1000 ft3)

Mechanical Ventilation

© 2008 SRI International
Concentration Measurements

- A system of evacuated sampling bottles was used to measure hydrogen concentration at various points throughout the garage.
- The sample bottle concentration was measured after each test using an H2Scan palladium-nickel variable-resistance hydrogen sensor.

![Diagram of concentration measurement setup]
• Flame Front Detection
 – *Fast response thermocouples were used to measure the flame front time-of-arrival (TOA) and to determine the location of the ignition.*

• Pressure Transducers
 – *The blast overpressure generated within the garage was measured using four pressure transducers mounted on the inside walls.*
 – *Six free-field pressure transducers were used to measure the overpressures outside the garage.*
Jet Release Momentum

- The concentration profiles inside an enclosure are influenced by magnitude of:
 - Release momentum
 - Buoyancy forces
- Vertical stratified ceiling layers can form when buoyancy forces dominate [Baines & Turner].
- When momentum forces are dominant, overturning of the gas can lead to the development of a well-mixed ceiling layer.
- The distance over which the momentum forces play a critical role, L_m, has been given by Morton as:

 \[
 L_m = 0.63\alpha^{-1/2} \frac{M_o^{3/4}}{F^{1/2}}
 \]

 α is the plume entrainment coefficient, taken to be 0.09

Buoyancy flux

\[
F = w_o \pi \left(\frac{\rho_a - \rho_{H_2}}{\rho_a} \right) \left(\frac{D_o}{4} \right)
\]

Release momentum

\[
M_o = w_o \pi D_o^2 / 4
\]

\[
L_m = 0.96w_o \sqrt{\frac{D_o \rho_a}{g(\rho_a - \rho_{H_2})}}
\]

- L_m has been calculated for ambient conditions.
- Release rates ≥ 1.5 kg/hr momentum forces were dominant when the release plume reached the ceiling at 2.72 m.
- Indicates that overturning will occur near the ceiling and that a well-mixed ceiling layer is likely to be formed.

Mechanical Ventilation Tests

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Garage Interior</th>
<th>H$_2$ Release Rate (kg/h)</th>
<th>H$_2$ Mass Released (kg)</th>
<th>Release Duration</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Ventilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Empty</td>
<td>3.30</td>
<td>2.20</td>
<td>40 min</td>
<td>0.12 m3/s</td>
</tr>
<tr>
<td>5</td>
<td>Empty</td>
<td>3.33</td>
<td>2.22</td>
<td>40 min</td>
<td>0.19 m3/s</td>
</tr>
<tr>
<td>6</td>
<td>Empty</td>
<td>3.27</td>
<td>2.18</td>
<td>40 min</td>
<td>0.42 m3/s</td>
</tr>
<tr>
<td>7</td>
<td>Empty</td>
<td>6.70</td>
<td>4.47</td>
<td>40 min</td>
<td>0.10 m3/s</td>
</tr>
<tr>
<td>8</td>
<td>Empty</td>
<td>1.65</td>
<td>1.10</td>
<td>40 min</td>
<td>0.10 m3/s</td>
</tr>
<tr>
<td>9</td>
<td>Empty</td>
<td>1.52</td>
<td>1.01</td>
<td>40 min</td>
<td>0.20 m3/s</td>
</tr>
<tr>
<td>10</td>
<td>Empty</td>
<td>1.55</td>
<td>1.03</td>
<td>40 min</td>
<td>0.38 m3/s</td>
</tr>
<tr>
<td>11</td>
<td>Empty</td>
<td>4.92</td>
<td>3.28</td>
<td>40 min</td>
<td>0.10 m3/s</td>
</tr>
<tr>
<td>12</td>
<td>Empty</td>
<td>4.98</td>
<td>3.32</td>
<td>40 min</td>
<td>0.19 m3/s</td>
</tr>
<tr>
<td>13</td>
<td>Empty</td>
<td>4.92</td>
<td>3.28</td>
<td>40 min</td>
<td>0.38 m3/s</td>
</tr>
</tbody>
</table>
Average Concentration in Garage Ceiling Layer

Mechanical Ventilation Configuration

- 6.7 kg/hr release
 - Overpressure generated was well below a level that would cause eardrum rupture.
 - Overpressure could potentially launch projectiles.

- ≤4.9 kg/hr release
 - Overpressures that resulted were very low and did not represent a risk to people or property.
 - Primary hazard was the deflagration of the hydrogen and air mixture and the burning of the hydrogen jet fire inside the garage.
Natural Ventilation Tests

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Garage Interior</th>
<th>H₂ Release Rate (kg/h)</th>
<th>H₂ Mass Released (kg)</th>
<th>Release Duration</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Ventilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Empty</td>
<td>9.22</td>
<td>3.07</td>
<td>20 min</td>
<td>Natural</td>
</tr>
<tr>
<td>2</td>
<td>Vehicle</td>
<td>9.04</td>
<td>3.01</td>
<td>20 min</td>
<td>Natural</td>
</tr>
<tr>
<td>3</td>
<td>Vehicle</td>
<td>0.88</td>
<td>0.44</td>
<td>30 min</td>
<td>Natural</td>
</tr>
</tbody>
</table>

- Two tests were conducted to evaluate what effect a vehicle inside the garage would have on hydrogen concentrations and any resulting combustion.
- The vehicle was a Ford Explorer with dimensions similar to a potential future fuel-cell vehicle.
Hydrogen Concentration Measurements

9 kg/hr releases

Hydrogen concentrations at the top of the garage were similar at the time of ignition for the test with an empty garage and the test with a vehicle inside.

[Graphs showing average H₂ concentration over time for two tests with different release rates and distances from the source.]
Vehicle Inside Garage with a 9 kg/hr Release
Infrared Video

9 kg/hr release with an empty garage vs. with a vehicle inside

Test 1: Empty Garage

Test 2: Vehicle Inside
Flame Front Propagation and Flame Speed

- There was a small increase in flame speed when the vehicle was present.
 - *Probably caused by the vehicle-created blockage inside the garage*
- The enhancement of the deflagration caused by the external surface of the vehicle appears to be small.
Vehicle Damage

- Internal explosion occurred within the engine compartment and inside the cabin.
- The deflagration did not set the vehicle or any of its components on fire.
Overpressure and Impulse

- A sudden increase in overpressure occurred about 0.085 s after ignition when the vehicle was inside the garage.
 - Can be attributed to the enhancement of the deflagration as it propagates through the congested region inside the engine compartment and inside the cabin of the vehicle.
Summary and Conclusions

• All the release scenarios resulted in well-mixed lean mixtures below the ceiling.

Mechanical Ventilation Configuration

• ≤ 4.9-kg/hr release
 - Primary hazard was the deflagration of the hydrogen and air mixture and the burning of the hydrogen jet fire inside the garage.
 - Overpressures were very low and did not represent a hazard to people or property.

• 6.7-kg/hr release
 - Overpressure generated was well below a level that would cause eardrum rupture.
 - Overpressure could potentially launch projectiles.

Natural Ventilation Configuration

• 0.88-kg/hr release (with vehicle)
 - Ignition occurred above the release point, and the flame slowly propagated across the ceiling.
 - No overpressure was detected.
Summary and Conclusions (cont.)

Natural Ventilation Configuration (cont.)

• 9 kg/hr release (no vehicle)
 – Flame speeds between 16 and 53 m/s were measured on the ceiling.
 – Overpressure generated was below a level that would cause eardrum rupture.

• 9 kg/hr release (with vehicle)
 – Slight increase in flame speed near ceiling when compared with the no-vehicle test
 – Significant overpressures were generated due to the vehicle presence: they were tripled inside the garage and doubled outside the garage.
 ▪ Interior overpressures were of a magnitude where ear drum damage could be a concern.
 ▪ Most likely due to turbulent enhancement created by the congested region and confinement inside the vehicle.
 – An internal explosion occurred within engine compartment and inside cabin shattering glass and launching projectiles
 ▪ The buoyant ceiling layer probably extended below the hood of the car and collected inside the vehicle.

The internal geometry of the vehicle needs to be taken into account when modeling this type of accident scenario.
Thank You!

Questions?