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Introduction

For safety reasons, the final gas temperature in the hydrogen tank during
refueling is limited to 85°C. Many experiments have been done for
determining the final gas temperature in the hydrogen tank.

Lots of numerical simulations based on computational fluid dynamics
have been performed and compared with experiments.

The rule of mixtures is a general weighted average method, which has
been widely used to estimate various properties of a composite materials,
porous media and multiphase system.

The effective (moderate) temperature of the mixture (cold and warm
hydrogen, or hydrogen and tank wall, or even hydrogen and porous
adsorbent) can be estimated based on the energy balance method.

We will apply the conception and the method to study effect of initial and
final mass, effect of inlet and initial temperatures, effect of initial pressure
and average pressure ramp rate (APRR), effect of initial pressure,
ambient temperature and mass flow rate. The fittings agree very well with
the original data.



THERMODYNAMIC MODEL

Equations of Lumped Parameter Model

» Mass balance equation

dm . L. ,
—=m where m=m_—m_,
dt
» Energy balance equation m=m,+ mt

i(imt)=n'fth+Q' where mh=m.h_—m__h

Cl’t In" “in out” “out
l<j: m=m, + mt
du

(2, +mz)g+mu = rih+Q whereQ=a, A (T, -T)
Tt =m,/m qg=0/m

(t*—l—t)c;—z;l+u:h+q




THERMODYNAMIC MODEL

Analytical Solution of Energy Equation

(t* +t)d—u+u =h+q where u=c1

dt
h=c,T,
1 qzcva(Tf—T)
d_T:(1+a)T ~1' Wwhere T*:7/Too+an
dt " +1 l+a

1 a=a, A /(c, )
y=c,lc,

T* —T 1 I+ *
¥ = where 7 =1¢/¢




THERMODYNAMIC MODEL

Weighted Averaging Form of Temperature

» Solutions of mass and energy equations

m=m, -+t S m/m, =1+1

A

t=my/m, T=t/t

T -T (1) T"-T
T*—TO_(1+TJ?T*—TOZ'U

U= mO /m, luv: lLl1+a

» Weighted averaging form of temperature

T=uT, +(1-u)" (Rule of mixture)



THERMODYNAMIC MODEL

Analogy for Finial Gas Temperature

» Adiabatic tank not considering thermal capacity of the wall

mec 1l =myc 1, + (m —m, )cpTOO

T = ILITO + (1 — ,Ll)T where 7T = 78
» Adiabatic tank considering thermal capacity of the wall
mel+mc T =mel +mc T + (m —m, )cpT )

If the conductive resistance of the tank wall 1s neglectable, the
wall temperatures equal to the hydrogen temperatures, 1.€.

Tw — T TWO — 710
So T = fycl,+ (1 — e )T " (Rule of mixture)

where Jfae = (mocv + mwcw)/ (mcv + mwcw)



RESULTS AND DISCCUSIONS

Final / Initial Mass Ratio - Model

Two-parameter
formula

T
mean_ _ (A_l_B(ﬂ)%)C
T, m,

Three-parameter
W. Merida. JPS 165 (2007) :324-336 formula




RESULTS AND DISCCUSIONS

Final / Initial Mass Ratio - Results
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RESULTS AND DISCCUSIONS

Inlet and Initial Temperatures - Model

T =u 0+(1—,u')T

%k

< T*:;/Too—i—an
l+a
1—4f 1—4/
T=uT,+— T, +—FaT,
I+« 1+

l<: a=0
/K
T = ILl]B —|—(1— lu)j/];o initial tempe

unction of inlet and
\ ratures




RESULTS AND DISCCUSIONS

Inlet and Initial Temperatures - Results
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T'=0.598537, +0.60736T

Fitted parameter 0.60736 agrees with the
number of 0.6 from linear curve fitting.
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RESULTS AND DISCCUSIONS

Initial Pressure and APRR - Model

%k

T =u 0+(1—,u')T T

T
. T +al
4 =L flTO‘T

v+ .
T=uT.+(1-u' I, a=(a, A4)/(cm)
M1 ( lu)l-l—Ot f f

< a=B/p=B/APRR
p'=pu=Ap,

Function of
initial
pressure and
APRR

y+B/p
T = A4 7. +(1— A4 T



RESULTS AND DISCCUSIONS

Initial Pressure and APRR - Results
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The fitting based on the simulated data
is better than that based on the
experimental data because it has more
data points.
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RESULTS AND DISCCUSIONS

Initial P, Ambient T and MFR - Model

T=uT, +(1- ) T, =293.15K
T*:yTOO+an y=14
l+« '
" T H=K,p,
T'=u1, “ al a=K /m
I+ I+
T, =T,T, =T, T, =T,
y+o Q/IIUT T ﬂ+1 ﬂijJrlﬂ
l+a l+a I+a I+a

Negatively linear with Positively linear with
initial pressure ambient temperature




RESULTS AND DISCCUSIONS

Initial P, Ambient T and MFR - Results
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Conclusion

The energy, like density and heat capacity, is not sensitive with the
structure of the mixture or composites. Therefore, the upper bound of
the rule of mixtures 1s used to estimate the hydrogen temperature.

The analytical solution of hydrogen temperature behaves i1n an
analogous way as the rule of mixtures. The final hydrogen temperature
i1s the weighted average of initial temperature and a characteristic
temperature which 1s related the inflow enthalpy of hydrogen. The
weighted factor is initial heat capacity fraction.

The simple uniform formula, inspired by the concept of the rule of
mixtures with its weighted factors obtained from the analytical solution
of thermodynamic model, 1s applied to fit published experimental or
simulated results.

These results show effect of initial and final mass, effect of inlet and
initial temperatures, effect of initial pressure and average pressure ramp
rate (APRR), effect of initial pressure, ambient temperature and mass
flow rate. The fittings agree very well with the original data.
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