reacH₂

Hydrogen compatibility of austenitic stainless steel tubing and orbital welds

Chris San Marchi
Sandia National Laboratories, Livermore CA
and

L.A. Hughes, B.P. Somerday, and D.K. Balch SNL/CA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

reacH2

Materials selection for hydrogen service includes diverse range of product

Hydrogen delivery

- e.g., hydrogen pipelines: carbon steels
- Challenge: cyclic pressure

Mobile storage (fuel tanks)

- e.g., hydrogen forklifts: Cr-Mo ferritic steels
- Challenge: cycling ~6/day

Pressure manifold components

- -Austenitic stainless steels
- Challenges: low temperature, lower-cost alternatives (e.g., aluminum), alloy content, welding

Motivation

- Tubing and piping are important components of hydrogen energy infrastructure
 - Relatively little work has been devoted to evaluation of tubing materials
- Orbital tube welding is an effective joining strategy for gas handling and dispensing manifolds
 - H-assisted fracture of welds has not been extensively characterized

Conclusion from Workshop on Hydrogen Compatible Materials at SNL/CA (November 2010):

 Evaluation of welded structures is critical to deployment of hydrogen infrastructure and technology.

reacH₂

Tensile properties of tubing and orbital tube welds were evaluated

Testing scope: Uniaxial tension

- As-received tubing
- Internal hydrogen (~140 wtppm)
 - Produced by thermal precharging (573K in 140 MPa H2)
 - Simulates hydrogen at stress concentrations
- Orbital tube welds
- Effect of subambient *temperature*
 - 293 K (room temperature)
 - 223 K (-50°C)

A range of alloy compositions and material strength have been evaluated

Alloy type	ID	Yield strength (MPa)	Cr (wt%)	Ni (wt%)	C (wt%)	S (wt%)
316L	316L	286	16.7	12.4	0.018	0.006
304L	1	n/m	18.2	9.1	0.020	0.004
304L	2	656	18.6	11.7	0.021	0.0004
304L	3	296	18.7	11.6	0.015	0.026
304	4	627	18.3	10.2	0.04	0.002
304L	5	359	18.4	10.2	0.01	0.007
304L	6	763	18.4	8.2	0.024	0.003

Low nickel

High carbon

High sulfur

Thermal treatment was used to vary microstructure

Material/ Condition	Temperature (K)	Time (min)	Yield strength (MPa)	Target microstructure
2A	n/a	n/a	697	Strain-hardened (as-received)
2B	866	60	678	Partially recovered
2C	1000	30	576	Full recovery
2D	1033	30	377	Partially recrystallized
2E	1116	60	228	Fully recrystallized
2F	1311	60	179	Annealed
xS	998	240	varies	Sensitized

- Heat treatments applied to only alloy no. 2 (304L)
- Sensitization is used to evaluate susceptibility to stress corrosion cracking (not evaluated for the 316L alloy)

reacH₂

Strength and microstructure show only modest effect on hydrogen resistance

- Hydrogen resistance dependence on yield strength is relatively small for strength in range of 180 to 700 MPa
- RRA > 0.8 for low dislocation microstructures
- RRA ~ 0.7 for high dislocation microstructures

RRA = RA(H)/RA(air)

Austenitic stainless steel tubing behaves similarly to bar materials

- Higher yield strength results in lower tensile ductility in the presence of hydrogen for both tubing and bar
- Other material variables can dominate effects

Compositional trends are also similar for tubing and bar

 Nickel composition is an important variable in hydrogenassisted fracture of austenitic stainless steels

reacH2

Carbon content has indirect consequences for hydrogen resistance

- There is no direct trend of hydrogen ductility loss with carbon content
- However, carbon content can indirectly influence the effects of H
- Sensitization evaluates the sensitivity of austenitic stainless steels to microstructural segregation, which affects resistance to H

- For type 304L: sensitization does not strongly impact hydrogen effects
- For type 304 (high carbon): sensitization enhances effects of hydrogen
- Effect of high sulfur?
 - Material no. 3 has ~5x more sulfur than the other alloys

Fractography of tubing is similar to base materials

reacH2

Compositional segregation (S & C) appear to enhance the effects of H

Orbital tube welds behave similarly to the tubing materials

- The yield strength of the welded specimens are similar to annealed tubing
- Tensile ductility Hprecharged welded specimens can be similar to tubing
- Two sets of 316L welds (A and B) produced independently, resulted in different effects of H
 - Weld B is still very ductile

Summary

- Hydrogen effects evaluated in austenitic stainless steel tubing and orbital tube welds
 - Tensile testing shows similar tensile ductility in tubing as in annealed and strain-hardened bar
 - Effect of internal hydrogen on tensile ductility in tubing is similar to previous work on bar materials
 - Welded specimens generaly display similar tensile ductility as the tubing of the same strength
 - Welded specimens remain very ductile after hydrogen precharging
- Conclusion: Orbital tube welds in austenitic stainless steels can display similar resistance to hydrogen embrittlement as the tubing from which the welds are manufactured

