

5th International Conference on Hydrogen Safety Brussels (Belgium), 9 -11 September 2013

JRC Reference data from experiments of on-board hydrogen tanks fast filling

B. Acosta-Iborra, P. Moretto, N. De Miguel, R. Ortiz F. Harskamp and C. Bonato

Joint Research Centre (JRC)
Institute for Energy and Transport - IET

Outline

- Introduction
- JRC GasTeF facility
- Description of the Experimental Results
 Database
- Examples of Results
- Conclusion
- References

Introduction

Regulations, codes and standards: compressed hydrogen storage system of a HFV

 European Regulation on type-approval of hydrogen vehicles (EC/79/2009 and EU/406/2010) UN-ECE Global Technical Regulation on hydrogen and fuel cell vehicles (2013)

Legally Binding
Alignment required

 ISO TS 15869 - Gaseous hydrogen and hydrogen blends - Land vehicle fuel tanks (2009)

- SAE J2579 Technical Information Report for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles (2013)
- SAE J2601 Hydrogen Fueling Protocol (2013)

Tests in RCS

Performance requirements for hydrogen storage systems Verification tests for expected on-road performance

Typical tests for high pressure H2 storage

- ✓ Burst test
- √ Bonfire test
- ✓ Chemical exposure test
- ✓ Ambient temperature and extreme temperature pressure cycle test (hydraulic)

- ✓ Accelerated stress rupture test
- ✓ Impact damage test
- ✓ Leakage test
- √ Hydrogen gas cycle test
- ✓ Hydrogen permeation test
- Need of <u>harmonisation</u> for the <u>technical implementation</u> of test requirements and procedures
- Need of <u>scientific/technical data</u> to justify globally harmonized test requirements and procedures

JRC facility

- GasTeF = an EU reference laboratory for safety and performance assessment of high-pressure hydrogen (and natural gas) storage tanks
 - ➤ Cycling tests: >1000 cycles of fast filling (≤5') and slow empting (10'-60') @ 80 MPa
 - > Permeation measurements: tank is kept pressurised for 100-500 hours

Simplified 'history' of a hydrogen tank

Time

Requires consideration also in fuelling RCS and protocols

GasTeF Functioning

- GasTeF operation mode for tank fast filling is different than that of HRS:
 - > H₂ taken from a reservoir at 29 MPa
 - ➤ 1st phase of filling is gas flowing from reservoir to tank till equilibrium
 - \triangleright 2nd phase is pumping the H₂ into the tank using the compressor
 - > APRR regulated by the "compressor speed"
 - Semi-communication filling

GasTeF refueling approach

Two filling stages: (1) <u>Equilibration</u> with gas reservoir; (2) <u>compressor</u> pumping (visible effect of piston on tank pressure and mass flow signals).

H₂ Path

H₂ Path

Hydrogen pre-cooler based on liquid nitrogen immersion

P Tank P Inlet

Experimental

Instrumentation

Tank internal and external instrumentation before start of the cycling

Temperature

measurement

Example of a type 4 tank with internal thermocouples array system

Internal: 1 mm type K

thermocouple

External: Resistance Temperature

Detector

REAR

Tested Tanks

	Type 4 19 I	Type 4 29 I	Type 3 40 I
Materials			701
Liner	HDPE	HDPE	AA
End Bosses	AA	SS	AA
Composite shell	CFRE	G&CFRE	CFRE
Vessel mass (Kg)	18.3	32.9	41.5
Storage volume (L)			
(at 700 bar)	19	28.9	40
H2 capacity (Kg)			
(with fill density of	0.76	1.16	1.60
40.22 Kg/m3)			
Unpressurized			
dimensions (mm)			
External length	904	827	920
External diameter	228	279	329
Internal diameter	180	230	290

183 entries for filling tests in the database!

Tests on tanks

type 4

Matrix of Tests on Type 4 29 litres 133 fast filling tests

Filling Tests on Type 4 29l with initial pressure 2-4 MPa

Tests on tanks

type 3

Tests on Type 3 H₂ @ ambient T

23 Filling tests on Type 3, 40 I

FILLING CONDITION	APRR (MPa/min)	TANK INNER TEMPERATURE "ad initio" (°C)
0-77 MPa	9.2	22.9
0-78 MPa	16.5	19.9
0-79 MPa	33.8	17
2-70 MPa	7.8	1.6
2-75 MPa	4.3	1.8 & 4.5
2-77 MPa	8.9 & 10	22.9 & 47
2-78 MPa	5.5 - 18.6	-0.6 - 18.3
2-79 MPa	24.9 & 30.2	20
2-80 MPa	30.7	4.5
2-85 MPa	15.1 & 16.2	-1.2 & -0.2
3-70 MPa	6.5 & 8	3.6 & 1

Database

assessment

Filling-Holding-Emptying cycles Reproducibility

Results Repeatability
12 Filling Tests on Type 4 29l
2-76.9 MPa at 17.8 MPa/min

	MEAN	STANDARD DEVIATION
Filling Time, (s)	253	1.4
Initial P, (MPa)	1.99	0.36
Final P, MPa	76.89	0.91
Tank averaged Initial T, (°C)	11.2	3.7
Tank averaged Final T, (°C)	86.9	2.9
Increase in temperature, (°C)	75.6	0.9

Fast Filling Test

Typical RCS pneumatic (hydrogen) test parameters

Example of results

APRR effect on internal gas temperature increase is compounded by different other boundary conditions

Measuring tank

temperature

Measurement on tank metallic boss depends on boss material

Defuelling

Typical RCS pneumatic (hydrogen) test parameters

Tank de-fuelling

"stratification" at the end of the emptying phase
Different tank conditions at the time of start of re-fuelling

Tests with

pre-cooling

From material and safety considerations point of view, the maximal temperature in the tank cannot exceed **85°C**, so that pre-cooling of hydrogen is required in many refuelling cases.

Type 4: 33 Fast Filling with H2 pre-cooled at temperatures -45, -30, -15 and -10 °C

Type 3: 26 Fast Filling with H2 pre-cooled at temperatures -35.7, -20, -16, -12, -9 and -4.5 °C

Filling with cold H₂

T inlet (no cooling) = 20 °C T inlet (cooling) = -30 °C

Cycles with

pre-cooling

Temperature measured at the front boss

Conclusions

- GasTeF is designed to carry out H₂ cycle test and permeation according to EU regulation 406/2010 and to standards ISO and SAE.
- Results are used to validate and improve safety and performance requirements for H₂ tanks for transport applications. Results to be considered into RCS framework.
- 183 entries for tests conducted on type 3 and 4 commercial tanks. The database contains results of temperature measurement for filling and emptying conditions representative of operation of H₂ tanks.
- GasTeF data available as reference for safety studies and CFD validation.
- JRC is willing to contribute with it experimental data to inter-lab comparisons among other organisations involved in the same type of tests.

References

- 1. Acosta B., Moretto P., Frischauf N., Harskamp F., GASTEF: The JRC-IE Compressed Hydrogen Gas Tanks Testing Facility, Proceedings of the Eighteenth World Hydrogen Energy Conference, 16-21 May 2010, Essen.
- 2. Acosta B., Moretto P., Frischauf N., Harskamp F., Bonato C., Fast Filling and Permeation Experiments at the JRC-IE GasTeF Facility, Proceedings of the Fourth International Conference on Hydrogen Safety, 12-14 September 2011, San Francisco.
- Galassi M.C., et al., Validation of CFD Models for Hydrogen Fast Filling Simulations, Proceedings of the Fourth International Conference on Hydrogen Safety, 12-14 September 2011, San Francisco.
- 4. Galassi M.C. et al., CFD analysis of fast filling scenarios for 70 MPa hydrogen type IV tanks, International Journal of Hydrogen Energy, 37 (2012), 6886–6892.
- 5. Galassi M.C., et al., Assessment of CFD models for hydrogen fast filling simulations, International Journal of Hydrogen Energy, (2013), in press available on-line.
- 6. De Miguel N., et al., Experimental study of the thermal behaviour of hydrogen tanks during hydrogen cycling, submitted to 5th International Conference on Hydrogen Safety, 9-11 September 2013, Brussels.
- 7. Acosta B. et al., JRC Reference data from experiments of on-board hydrogen tank fast filling, submitted to 5th International Conference on Hydrogen Safety, 9-11 September 2013, Brussels.
- 8. Melideo D. et al., Assessment of a CFD model for the simulation of fast filling of hydrogen tanks with pre-cooling, submitted to 5th International Conference on Hydrogen Safety, 9-11 September 2013, Brussels.

