



#### **ICHS 2013**

#### **5th International Conference on Hydrogen Safety**

Brussels, 11<sup>th</sup> Semptember

**HELIOS**: A new method for Hydrogen permeation test

Valentini R.\*, De Sanctis M., Lovicu G., and Colombo C.
Dept. of Civil and Industrial Engineering, University of Pisa

\*r.valentini@diccism.unipi.it costanza.colombo@for.unipi.it

## **Concerning Hydrogen Induced Cracking (HIC) risk**

Hydrogen Embrittlement (HE) and Stress Corrosion Cracking (SCC) are still **severe and current threats**.



The mitigation of HIC risk is fundamental for the safety of the **hydrogen storage** and **transportation**.





## **Hydrogen sensing and detection**

# Current techniques (electrochemical & amperometric sensors)

- Parts fragility
- Apparatus complexity
- Poor sensitivity
- Expensive



Not suitable for Non-Destructive Testing

Innovative technology (metal oxide solid state sensors)

- Resistant hard-ware
- Easy to handle
- High sensitivity
- Cost saving



A new method for in-situ HIC risk assessment



## **MOS** Sensors for hydrogen flux monitoring



- *Response time (T90):* <15 s at 100 ppm

- Sensor sensitivity:
0.5 pl/cm²/s for hydrogen in air



Letomec s.r.l. Via Fiorentina 47, Pisa, Italy +39 3930673665 www.letomec.com



## **Research programme**

**Step 1: HELIOS** measurements





Hydrogen flow through the steel wall of a gas cylinder

Step 2: validation of HELIOS results





Traditional tecniques for hydrogenation and hydrogen content measurement

## **Validation procedure**



#### Fick's Law

$$J = D \frac{C_{IN} - C_{EX}}{L}$$



#### Sievert's Law

$$C_H = A \cdot \sqrt{P_{H_2}}$$



## **Step 1: HELIOS measurement**

- Sample: gas cylinder wall

- Surface condition: painted

- Cylinder internal pressure: **60 bar** 

**X52** low strength steel (D= $2.50\pm0.5$ E-6 cm<sup>2</sup>/s).



## Hydrogen flux through a painted cylinder wall







With barrier: no hydrogen flux

**A stainless steel thin sheet** was inserted between the probe and the cylinder surface in order to prevent hydrogen detection thanks to stainless steel very low hydrogen diffusivity.

## Hydrogen flux through cylinder wall: results from HELIOS



Sequence of measurements performed with or without the stainless steel barrier.

Hydrogen flux range:  $135 \div 150 \text{ pl/cm}^2/\text{s}$ .

## **Step 2: validation of HELIOS results**

a) Gaseous hydrogenation of X52 steel plane specimens in autoclave was performed at different hydrogen partial pressures (50, 100 and 150 bar) for a charging time of 1 week each.



b) Thermal desorption to measure hydrogen content by means of LECO DH603.



c) Correlation between  $P_{H_2}$  and  $C_H$  gives the experimental relation to verify results obtained from HELIOS analysis.

## Hydrogen concentration vs hydrogen pressure



#### **Discussion**

From **HELIOS** experimental data,  $C_H$  can be calculated by Fick's law at the steady state:

$$C_H = \frac{J \cdot L}{D} = 0.22 \div 0.24 \text{ wppm}$$

Substituing gas cylinder pressure and the constant A values in **Sievert's law** expression, it results:

$$C_H = A \cdot \sqrt{P_{H_2}} = 0.22 \text{ wppm}$$

#### **Conclusions**

- 1) Hydrogen flow measurements, and accordingly in-situ HIC risk assessment, can be successfully faced using HELIOS. In particular, hydrogen flux through a **gas cylinder painted wall** was detected with no preliminary surface preparation.
- 2) Hydrogen concentration values, obtained by a proper elaboration of HELIOS data, are **coherent** with the results of the analysis carried out according to Sievert's theory.

### Future works and potential applications

- 1) The extreme sensitivity of HELIOS sensor can be usefully employed to measure very **low hydrogen flux in operative conditions** related to hydrogen or hydrogenating fluids (Oil&Gas applications) storage and transportation.
- 2) Being the detection independent from the tank material, HELIOS can be usefully used to conduct tests on **polymers**. A future campaign on composite materials and multilayer walls is planned.

Thank you for attention.