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Detonability 

 

 Conventionally assessed by the ignition delay or 

alternatively the cell size. 

 Draw Back : Differentiating between mixtures known 

to behave differently : 

Mixtures with irregular structure found to be more 

detonable [Moen et al. 1986], [Desbordes et al. 

1993], [Desbordes 1988], [Kuznetsov et al. 2000], 

[Radulescu & Lee 2002] and  [Radulescu 2003] 

 

 

 

 

 

 

 

 

 



Irregularity and The detonability 

 

• [Shepherd 2009] 

 

2H2 + O2 + 17 Ar 

 

C3H8 + 5O2 + 9 N2 
 

 



Characteristic stability Parameter 

A Parameter to correlate with Detonability 

 

 

 

 

 

[Short & Sharpe 2003], [Radulescu 2003], [Ng et al. 

2005], [Bradley 2012], [Tang & Radulescu 2013] 
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Instability Growth Rates 

 

 

Short & Sharpe 2003, Ng et al 2005 and Leung et 
al 2010, investigated Influence of   on the stability 
of 1D detonations 

 

Critical    value of 50-100 for the onset of instabilities 

 







Instability Growth Rates 

Numerical soot foil for a mixture with   =24 

 

Numerical soot foil for a mixture with   =95 
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[Borzou et al. 2011] 

 



Goals 

Observing the influence of    on cellular dynamics 

of detonations in those mixtures. 

 

Measuring the value of characteristic    parameter 

in fuel-air mixtures at atmospheric conditions. 

 







Stability Parameter Calculations 

 

Performed for: 

 

A range of compositions from the lean to the rich limit for a 

variety of hydrogen, methane and propane-air mixtures. 

By extraction of (ti), (te), (Ea) and (Q). 

Numerous ways to extract meaningful values [Browne et 

al.  2004], [Liang et al. 2007] and [Radulescu 2003] 

 



Ignition Delay 

Detailed Kinetic Models:  

• Li et al. [3] for hydrogen 

mixture 

• Sandiego [4] for propane 

mixture 

• GRI 3.0 [5] for methane 

mixture 
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Post-shock VN state calculated with NASA CEA code [1] 

Kinetic properties of VN state obtained with constant 

volume ignition calculations: Cantera Package [2] 



Ignition Delay 
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Ignition Delay & Reaction Time 
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Induction to Reaction Time Ratio 
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Activation Energy 
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Heat Release 

•       and        obtained by calculations in NASA CEA code.  

• Heat release extracted from equilibrium calculations using 

perfect gas model. 
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Heat Release & Isentropic Heat 

Ratio 
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Characteristic Stability 

Parameter 
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Modeling 

Performing numerical simulations for :  

 Further studying the link between cellular instability and 

the    parameter.  

 Focusing on the stability of overdriven detonation waves 

in a reactive gas. 

 Planar blast waves originating from a plane source of 

energy, which decay towards self-sustained detonations.  

 Monitoring the onset of instabilities on the structure of the 

reactive blast wave during the shock decay. 

 

 





Modeling 

 Stoichiometric H2, C3H8 and CH4 air mixtures with the 

corresponding    parameter values of 132, 1920 and 7260 

respectively. 

 

 

 

 

 

 

 

 

 

 

Blast Wave ≈ 1000 P0 
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Modeling 

• Solving the reactive Euler equations coupled with the two step 

model using the AMRITA (J.J. Quirk) computational facility 

 

 

 

• Where, for an ideal gas 
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Instability Growth 

 

 

 

 

 

 

 

 

 

 

 

 
CH4-Air    =7260 



Instability Growth  

 

 

 

 

 

 

 

 

 

    

 

 

 C3H8-Air    =1920 



Instability Growth  

 

 

 

 

 

 

 

 

 

    

 

 

 H2-Air    =132 



Instability Growth 

 

 

 

 

 

  

 

H2-Air    =132 

C3H8-Air    =1920 

CH4-Air    =7260 
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Concluding Remarks 
 Characteristic    parameter was evaluated for fuel-air 

mixtures at atmospheric conditions. 

 Simulations showed that a methane-air mixture 

develops cellular structures more readily than 

propane and hydrogen, when observed on similar 

induction time scales. 



 Methane was found much more unstable than 

others with the highest values of    parameter. 

2834 HHCCH  
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