

5th International Conference of Hydrogen safety (ICHS)

September 9-11, 2013 - Brussels – Belgium

Evaluation of Selectivity and Resistance to Poisons of Commercial Hydrogen Sensors

<u>V. Palmisano*</u>, L. Boon-Brett, C. Bonato , F. Harskamp

European Commission - DG Joint Research Centre, Institute for Energy and Transport, Petten (NL)

W.J. Buttner, M.B. Post, R. Burgess, C. Rivkin

Safety Codes & Standards Group - Transportation and Hydrogen Systems Center
National Renewable Energy Laboratory, Golden CO 80401

*valerio.palmisano@ec.europa.eu

on Hydrogen Safety

Institute for Energy and Transport

Part of the Joint Research Centre (JRC), i.e. the European Commission's in-house science service.

JRC-IET Mission: to provide support to Community policies and technology innovation in the **field** of

1) energy - to ensure sustainable, safe, secure and efficient energy production, distribution and use

2) transport - to foster sustainable and efficient mobility in Europe.

Independent of private, national, financial or commercial interests

Cooperation with leading scientific organisations in the Member States, Associated Countries and worldwide.

JRC- sensor testing facility (SENTEF)

- Performance testing of H₂ Safety Sensors
- Comparison of different sensing technologies
- Influence of ambient parameters/contaminants
- Sensor response/recovery time measurement
- ❖ Temperature: -40°C → +130°C
- ❖ Pressure: 1 → 250 kPa
- ❖ RH: 10% @ -40°C, 99% @ 60°C
- ❖ 4 MFCs for inlet gases (H₂, CO, CH₄, CO₂, SO₂,...)
- GC Gas analysis

Mature technologies for sensing H₂

Thermal Conductivity (TCD)	H_2 : highest thermal conductivity of all known gases. $[H_2] \uparrow \longrightarrow \mathbf{T} \uparrow$ at sensing point, detected through a Wheatstone bridge.
Catalytic (CAT)	A sensing element detects the heat of combustion of H ₂ with O ₂ at the Pd/Pt catalyst.
Semiconductive Metal-Oxide (MOX)	Hydrogen gas reacts with chemisorbed O_2 in a semiconducting material, such as tin oxide, and changes the resistance of the material.
Electro-chemical (EC)	Oxidation of H_2 at the sensing electrode producing a current proportional to $[H_2]$. Counter reaction at the cathode (reduction of O_2)
Metal Oxide semiconductor (MOS)	3 layers structure: metal-insulator (oxide)-semiconductor. H_2 split at catalytic metal (Pd) giving raise to a H-dipole layer (at the interface) \longrightarrow work function changes
Pd Thin Film (PTF)	Most common relate the ${\bf resistance}$ of a Pd-based thin film to the external concentration of ${\bf H}_2$

Developping techniques: Optical, acustic, mechanical...

Cross sensitivity / poisons issue

Cross-sensitivity (i.e. selectivity): ability of a sensor to respond to the target analyte, regardless of the presence of other species.

Cross-sensitivity and resistance to poisons are considered main issues by sensor *end-users* because can lead to:

Undetected hydrogen leaks, with serious safety consequences (false negative)

False alarms, with economic damage (false positive)

We use ISO 26142 as a guide to define the effect of:

Interferents, transient effect on the sensor performances;

Poisons, the effect persist after exposure.

Strategies for selectivity

TCD	Responding to any species with a thermal conductivity different than air. Practically only He and few other species at high concentration. No poison effect expected (no chemical reaction is involved)
CAT	In principle may respond to any combustible gases. Selectivity: Pd catalyst + filters/ molecular sieve coatings.
MOX	Poor selectivity to H ₂ , i.e. responding to CO, CH ₄ , H ₂ O. Various strategies to increase selectivity: adjusting the MOX crystal structure and composition with dopants ; optimising the sensing material operating temperature for H ₂ detection; covering the surface with a silica layer.
EC	Membranes, (hindering diffusion of gasses ≠ H ₂ into the electrode); Selective materials (for H ₂) catalysing the electrochemical reactions.
MOS	Selectivity assured by the use of specific catalytic metals (Pt, Pd).
PTF (Pd surface selective to H ₂ ; Protective membranes (e.g. polymers like PTFE) against poisons (CO, SO ₂ , H ₂ S and Si-based compounds).

Exposure profile

- a) Exposure to 1vol% H₂ in air
 (control measurement stage)
- b) Exposure to 1vol% H₂ in presence of the interferent "i" (cross-sensitivity measurement stage)
- c) Exposure to 1vol% H₂ in air (recovery stage / poison effects)

The diluent gas is clean air.

Exposure profile for the cross sensitivity test.

Exposure profile

Gas species "i" and test concentrations

Species "i"	c [ppm]	
CO ₂	5000	level allowed by US OSHA
CH₄	10000	20% LEL
СО	50	level allowed by US OSHA
SO ₂	500	ISO standard

Exposure profile for the cross sensitivity test.

The response to other species is being tested.

EC platform vs. CH₄

a) Reference

b) Cross sensitivity effect

c) Poison effect

No effect!

EC platform vs. SO₂

Net response to the interferent

$$X_0^i = \frac{R_i - R_0}{R_H - R_0} = 0.06$$

Increment of the sensitivity to H₂ in presence of the interferent

$$X_H^i = \frac{R_{H,i} - R_i}{R_H - R_0} - 1 = 0.30$$

Change in the baseline after 3h exposure

$$P_0^i = \frac{R_{0,3hrs} - R_0}{R_H - R_0} = 0$$

Increment of the sensitivity to H₂ (post-exposure)

$$P_H^i = \frac{R_{H,3hrs} - R_0}{R_H - R_0} - 1 = 0.06$$

Catalytic platform

Cross sensitive to SO₂

Species	X ₀	X _H
500 ppm SO ₂	-0.88 ± 0.05	0.05 ± 0.05

500 ppm SO₂: detrimental on the sensor output.

Partially recovered by exposure to clean air

Species	P ₀	P _H
500 ppm SO ₂	-0.36 ± 0.05	-0.05± 0.05

CAT response during the exposure profile with 500 ppm SO₂

MOX platform

Negligible effect of CO and CO₂

Cross sensitive to CH₄: *promoter* for the absolute response; *inhibitor* for the net response.

Species	X ₀	X _H
1% CH ₄	0.65 ± 0.05	-0.6 ± 0.1

MOX response during the exposure profile with 1.0 vol% methane.

TC platform

No poison effect was found.

Negligible X_H for any gas tested.

$$K_{CH4} > K_{air} \rightarrow X_0 > 0$$

$$K_{CH4} > K_{air} \rightarrow X_0 > 0$$

$$K_{CO2} < K_{air} \rightarrow X_0 < 0$$

Species	X ₀	X _H
1% CH ₄	0.14 ± 0.02	-0.01 ± 0.02
0.5% CO ₂	-0.03 ± 0.02	-0.00 ± 0.05

TCD response during the exposure profile with 1.0 vol% methane

Expensive platforms: PTF, MOS

Summary of results

Species	PTF	MOS	EC	TCD	MOX	САТ
0.5% CO ₂	NO EFFECT	NO EFFECT	NO EFFECT	Interferent	NO EFFECT	To be tested
1% CH₄	NO EFFECT	NO EFFECT	NO EFFECT	Interferent	Interferent	Interferent
50 ppm CO	NO EFFECT	NO EFFECT	NO EFFECT	NO EFFECT	NO EFFECT	NO EFFECT
50 ppm SO ₂	NO EFFECT	NO EFFECT	Interferent POISON	NO EFFECT	To be tested	Interferent POISON

Conclusions and outlook

Expensive technologies (MOSFET, PTF) shows high selectivity to H₂ no poison effects, i.e. the sensors are well protected.

EC is poisoned by SO₂.

TCD shows cross sensitivity to CO₂ and to CH₄. No poison effect found.

Inexpensive technologies (CAT, MOX) shows high cross sensitivity to CH₄ and poison effects (SO_2) , i.e. the sensors are not specific to H_2 .

The effect of other gas species to be considered:

 NH_3 ; NO_2 ; (N-based compounds) (S-based compounds)

H₂S

HMDS (Si-based compounds)

Aknowledgements

JRC-IET is supported through European Commission's 7th Framework Programme

The NREL Sensor Laboratory is support by DOE-EERE Fuel Cell Technologies Office.

H2Sense Workshop

H₂ Sensors – the right one in the right place at the right price

12th September 2013

Fuel Cell and Hydrogen Joint Undertaking, Avenue Toison d'Or 56-60, B1049 Brussels (4th floor)

Extra slide: TCD

proportional

$$R_{i} \sim c_{i} \cdot (K_{i} - K_{Air}) + K_{Air}$$

$$R_{0} \sim K_{Air}; c_{H} = 1\%$$

$$X_{0}^{i} = \frac{R_{i} - R_{0}}{R_{H} - R_{0}} = \frac{c_{i}}{c_{H}} \cdot \frac{K_{i} - K_{Air}}{K_{H_{2}} - K_{Air}} =$$

$$0.5\% CO_{2} : 0.5 \cdot \frac{0.64 - 1}{7.13 - 1} = -0.03$$

$$= 1\% CH_{4} : \frac{1.30 - 1}{7.13 - 1} = 0.05$$

Experimental X ₀ (0.5% CO ₂)	Experimental X ₀ (1% CH ₄)
-0.03 ± 0.02	0.14 ± 0.02
(agreement with	(3 times the expected
calculations)	value)

Gas Species	Thermal Conductivity K [mW/(m.K)]	K / K _{Air}
Air	26.2	1.00
Hydrogen, H₂	186.9	7.13
Helium, He	156.7	5.98
Carbon Dioxide, CO ₂	16.8	0.64
Methane, CH₄	34.1	1.30
Carbon Monoxide, CO	25.0	0.95

Thermal conductivity of various gas species "i".

EC platform vs. SO₂

Net response to the interferent?

$$X_0^i = \frac{R_i - R_0}{R_H - R_0} = 0.06$$

$$X_0^i = \frac{R_i - R_0}{R_H - R_0} = 0.06$$
Influence the sensitivity to H₂?
$$X_H^i = \frac{R_{H,i} - R_i}{R_H - R_0} - 1 = 0.30$$
Does it recovers (3h exposure)?

$$P_0^i = \frac{R_{0,3hrs} - R_0}{R_H - R_0} = 0$$

Sensitivity to H₂ (after 3h exposure)?

$$P_H^i = \frac{R_{H,3hrs} - R_0}{R_H - R_0} - 1 = 0.06$$

CAT platform

Negligible effect of CO and CO₂

Cross sensitive to CH₄: promoter for the absolute response; inhibitor for the net response.

Not a poison.

Species	0.66 + 0.02	-0.18 + 0.02
1% CH₄	0.66 ± 0.02	-0.18 ± 0.02

CAT response during the exposure profile with 0.5 vol% methane.

