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Motivation

Motivation - Why is it important ?

Motivation
Improved understanding of ignition hazards

Aircraft fuel tank safety 1 Manufacturing safety 2 Mining safety 3

1. Simulated lightning strike on composite coupon performed at Boeing
2. Mechanical sparks from cutting and reshaping processes
3. Hot particles of decomposed explosive and casing
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Previous Work

Experimental work

Classical Experimental Work
In the 1930’s motivated by coal-mining operations - frictional sparks (moving
heated particles)

Figure 5 : effect of particle diameter 1

1. R.S. Silver. Phil. Mag. J. Sci., 23(156) : 632-657/1937.
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Previous Work

Experimental work

More Recent Experimental Work
Ignition of gaseous mixtures by submillimeter size stationary hot particles

Figure 2b : effect of particle material 2 Figure 4 : effect of mixture concentration 3

2. D. Roth et al. Combust. Sci. Techno., 186 :10-11/2014.
3. M. Beyer and D. Markus. 8th ISHPMIE Yokohama, Japan, 2010.
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Previous Work

Experimental work

Previous & Current Experimental Efforts at Caltech
Ignition of n-hexane mixtures
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Figure 3.15 : transiently heated surfaces 4 Figure : moving heated spheres 5

4. P.A. Boettcher. Ph.D Thesis. Caltech, 2012.
5. S. Coronel. Ph.D Thesis. Caltech (in preparation), 2015.
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Previous Work

Numerical work

Some Previous & Current Numerical Efforts
1D Simulation assuming spherical symmetry, quiescent atmosphere and
no-thermally induced convection

Figure 3b : Effect of mixture concentration 6 Figure 8 : Effect of particle size 7

6. D. Roth et al. Combust. Sci. Techno., 186 :10-11/2014.
7. M. Beyer and D. Markus. 8th ISHPMIE Yokohama, Japan, 2010.
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Previous Work

Theoretical Work

Analysis
C.K. Law 8 - Stagnation-point ignition of a premixed combustible and
ignition of a combustible by hot particles (B.L. equations, one-step
irreversible reaction and high activation energy limit)
Y. B. Zel’dovich 9 - Ignition of a fuel mixture flowing around an object
(B.L. equations, one-step irreversible reaction, Dorodnitsyn
transformation, no assumptions made w.r.t. activation energies,
complete analytical investigation of the system was impossible)
More recently Golovin, A.M. and Golovin, A.M & Rudakova, N.B. 10 with
similar simplifying assumptions ...

8. Int. J. Heat Mass Transfer., 21 : 1363-1368/1978a. ; AIAA Journal, 16(6) :628-630/1978b.
9. The Mathematical Theory of Combustion and Explosions, 1985.

10. High Temperature, 1996/1998.
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Goal

Goal

Objective

Explain the dynamics of ignition of combustible gases by inert moving
heated spheres when close and far from the ignition limit
Study the competition between diffusive and convective losses, and
chemical heat release to unravel the complex physics and chemistry at
play within the boundary layer during the ignition process
Explore the quantitative prediction of ignition thresholds

Melguizo-Gavilanes, J. et al. (Caltech) Ignition by Moving Heated Spheres October 2015 11 / 47



Physical Model, Numerical Approach and Simulation Parameters
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Physical Model, Numerical Approach and Simulation Parameters

Physical Model - Governing Equations

Reactive Navier-Stokes with temperature dependent properties
(µ : Sutherland Law, α = k/cp : Eucken Relation, cp : JANAF)

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)
∂t

+∇ · (ρuu) = −∇p+∇ · τ + ρg

∂(ρh)
∂t

+∇ · (ρuh) = ∇ · (κ/cp∇h) + qchem, (Le = 1)

∂(ρYi)
∂t

+∇ · (ρuYi) = ∇ · (ρDi∇Yi) + Ωi

with p = ρR̄T, τ = (p+ 2
3µ∇ · u)I + µ[∇u + (∇u)T ]

h =
∑

hiYi, qchem =
∑

hiΩi, Ωi = ρdYi/dt
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Physical Model, Numerical Approach and Simulation Parameters

Challenges

Wide range of temporal and spatial scales involved
Size of experimental aparatus (O(m))
Hydrodynamic length scales - Boundary layer thickness
(O(µm)−O(mm))
Chemical induction/ignition times (O(s)/O(ms)) and flame thickness
(O(µm))

Size of detailed chemical kinetic mechanisms
Hydrocarbon fuels conventionally used for transportation comprise
thousands of reactions and hundreds of species (e.g. n-hexane detailed
mechanism : 2581 reactions and 457 species)
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Physical Model, Numerical Approach and Simulation Parameters

Physical Model - Hydrogen Chemistry

Mével’s Mechanism (9 species and 21 reactions) 11

11. R. Mével et al. P. Combust. Inst., 32 & 33 / 2009 & 2011
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Physical Model, Numerical Approach and Simulation Parameters

Approach

2D simulation of reactive viscous flow using the Open source Field
Operation And Manipulation (OpenFOAM) toolbox 12

Spatial discretization done with Finite Volumes (FV)
Pressure-velocity coupling achieved using PIMPLE (PISO + SIMPLE) 13

Implementation of time dependent boundary conditions to reproduce
actual experimental conditions
High Performance Computing - resources provided by the Extreme
Science and Engineering Discovery Environment (XSEDE) supported
by the National Science Foundation (NSF)

12. H.G. Weller et al. J. Comput. Phys., 12 : 620-631/1998.
13. I. Demirdzic and Péric. Int. J. Numer. Meth. Fl., 16 : 1029-1050/1993.
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Physical Model, Numerical Approach and Simulation Parameters

Experimental setup, initial & boundary conditions

reactive mixture reactive mixture reactive mixture

N
2
 line

pneumatic actuatorsphere

to pyrometer

to pyrometeroptical shutter

window

supports

0
.1

 L
2

2
 L

Melguizo-Gavilanes, J. et al. (Caltech) Ignition by Moving Heated Spheres October 2015 17 / 47



Physical Model, Numerical Approach and Simulation Parameters

Nature of flow before contact with reactive mixture
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Physical Model, Numerical Approach and Simulation Parameters

Comparison with non-reactive experiments
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Results

Flow structure - boundary layer development

Temperature and velocity fields, temperature isocontours
and streamlines before contact with reactive mixture
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Results

When does ignition take place ?
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Results

Where does ignition take place ? (1/8)

Tsphere = 1200 K - Ignition Evolution

t = 0.25237 s t = 0.25250 s t = 0.25275 s t = 0.2530 s

Shortly before ignition Ignition Flame kernel formation Flame propagation
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Results

Where does ignition take place ? (2/8)

Tsphere = 1200 K

Closeup to ignition location - θ = 0◦
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Results

Where does ignition take place ? (3/8)

Tsphere = 1000 K - Ignition Evolution

t = 0.254354 s t = 0.254386 s t = 0.254466 s t = 0.25475 s

Shortly before ignition Ignition Flame kernel formation Flame propagation
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Results

Where does ignition take place ? (4/8)

Tsphere = 1000 K

Closeup to ignition location - θ = 90◦
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Results

Where does ignition take place ? (5/8)

Tsphere = 960 K - Ignition Evolution

t = 0.26625 s t = 0.266306 s t = 0.266362 s t = 0.2665 s

Shortly before ignition Ignition Flame kernel formation Flame propagation
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Results

Where does ignition take place ? (6/8)

Tsphere = 960 K

Closeup to ignition location - θ = 115◦ (threshold)
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Results

Where does ignition take place ? (7/8)

Tsphere = 950 K - No Ignition

t = 0.255 s t = 0.260 s t = 0.265 s t = 0.270 s
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Results

Where does ignition take place ? (8/8)

Tsphere = 950 K

No Ignition
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Results

Results Summary

850 900 950 1000 1050 1100 1150 1200 1250
Temperature (K)

0.01

0.1

1

10

100

1000
τ ig

n (
m

s)

τ
ign

 from 2-D simulation

Ignition threshold 2-D simulation
Ignition upon contact

0

20

40

60

80

100

120

θ ig
n

Ignition Location

Ignition times and locations from 2D simulations

Melguizo-Gavilanes, J. et al. (Caltech) Ignition by Moving Heated Spheres October 2015 31 / 47



Discussion

Outline

1 Motivation

2 Previous Work

3 Goal

4 Physical Model, Numerical Approach and Simulation Parameters

5 Results

6 Discussion

7 Closing Remarks

Melguizo-Gavilanes, J. et al. (Caltech) Ignition by Moving Heated Spheres October 2015 32 / 47



Discussion

Ignition times analysis
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Discussion

Energy equation analysis (1/5)

Recall the energy equation

∂(ρh)
∂t︸ ︷︷ ︸

Sum ( )

= −∇ · (ρuh)︸ ︷︷ ︸
hConvection ( )

+∇ · (κ/cp∇h)︸ ︷︷ ︸
hDiffusion ( )

+ qchem︸ ︷︷ ︸
hSource ( )
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Discussion

Energy equation analysis (2/5)

Tsphere = 1200 K

Closeup to ignition location - θ = 0◦
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Discussion

Energy equation analysis (2/5)

Tsphere = 1200 K

Closeup to ignition location - θ = 0◦
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Discussion

Energy equation analysis (3/5)
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Discussion
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Discussion

Energy equation analysis (3/5)
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Discussion

Energy equation analysis (4/5)

Tsphere = 960 K

Closeup to ignition location - θ = 115◦ (threshold)
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Discussion

Temporal evolution near ignition location (1/2)

Tsphere = 1200 K

Closeup to ignition location - θ = 0◦
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Discussion

Temporal evolution near ignition location (2/2)
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Discussion

Temporal evolution near ignition location (2/2)
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Discussion

Temporal evolution near ignition location (3/4)

Tsphere = 960 K

Closeup to ignition location - θ = 115◦ (threshold)
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Discussion

Temporal evolution near ignition location (4/4)
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Discussion

Temporal evolution near ignition location (4/4)
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Discussion

Chemical Pathways
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Box : Species Reservoirs
: Reservoir Inputs
: Reservoir Outputs

: Chain-branching
: Mixed pathways
: Non-chainbranching

At high T :
OH radicals mostly produced by chain-branching
processes (77%)
R1 : O2 + H = OH + O
R2 : H2 + O = H + OH
Non-chain branching through Path 1 (23%)

At low T :
Chain-branching processes significantly less (42%)
Non-chain branching processes
Path 1 (38%) :
R5 : H + O2(+M) = HO2(+M)
R3 : HO2 + H = OH + OH
Path 2 (16%) :
R6 : H + O(+M) = OH(+M)
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Closing Remarks

Closing Remarks (1/2)

Quantitative prediction of ignition thresholds for hot surfaces require a
detailed model that includes correct initial and boundary conditions to
capture important features such as boundary layer separation, and
energy transport processes
Ignition occurs within the thermal boundary layer at a location that
depends strongly on temperature
Large differences observed between 2D and 0D ignition times suggests
that simplified models based on comparison of residence times with
ignition delay times are inappropriate
As the temperature decreases to the ignition threshold, non-chain
branching chemical pathways are favored over chain branching
processes
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Closing Remarks

Closing Remarks (2/2)

Two distinct behaviors observed :
− Far from the ignition threshold

− Reaction starts shortly after contact with reactive mixture
− Ignition occurs between the front stagnation point and separation region

depending upon the sphere’s surface temperature
− Ignition time is very short and takes place in a more diluted mixture compared

cases close to the ignition threshold
− Closer to the threshold

− Rate of heat deposition into the gas not high enough to trigger fuel conversion
during transit from the front stagnation point to the separation region

− Boundary layer separation results in a zone of slower moving gas, where
reactive mixture is "confined", conduction of heat takes place readily and
convective losses are minimal
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Closing Remarks

Conclusion

Not only does flow separation play an important role in hot particle ignition,
but also when considering different geometries
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