Presentation Start

IPHE Regulations Codes and Standards Working Group - Type IV COPV Round Robin Testing

Maes, M., Starritt, L.*

Zheng, J.Y., Ou, K. **

Keller, J. ***

*NASA White Sands Test Facility, United States

** Zhejiang University, China

*** Zero Carbon Energy Solutions, Inc.,

Consultant U.S. DOE, Fuel Cell Technology Office,

Safety Codes and Standards

Previously with Sandia National Laboratories

ICHS2015 October 19, 2015

Presenting Author

Background

- Challenge and Approach:
 - Harmonized regulations, codes and standards (RCS) are essential to establishing a marketreceptive environment for commercialization of Hydrogen and Fuel Cell Technologies.
 - In May 2010 (Essen, Germany), IPHE SC endorsed the importance of the RCS Working Group (WG) in taking a leading role in harmonizing RCS, from an IPHE top down perspective

Background

> Benefit:

- The RCSWG's role is to create and conduct a forum where potentially contentious and controversial issues of RCS are identified and handled. The RCSWG can recommend a consensus solution and promote resolution of contentious issues.
- The RCSWG also conducts pre-normative work to globally harmonize the execution of testing relevant to RCS.

Background

> Technical Issue:

 There have been issues raised about the lack of uniformity in test measurement protocol related to Type IV composite overwrap pressure vessels (COPV).

> RCSWG Response:

 A Round Robin (RR) to define a harmonized test measurement protocol.

Type IV Tank Testing Round Robin

> September 2011:

 Launched a multi-phase Round Robin (RR) testing program for Type IV COPVs (Japan, UK, Brazil, EC, France, Canada, China, U.S.)

Phase I:

 Defined a unique test protocol patterned after SAE J2579, GTR, and EIHP rev12b.

Type IV Tank Testing Round Robin

- > Phase II:
 - Hydraulic cycle tests (up to 25 MPa)
 - U.S. testing performed at the NASA WSTF
 - Real time 24/7 access to the acquisition computer
 - China testing performed at the Institute of Process Equipment, Zhejiang University
 - Testing occurred during a site visit from U.S.
 - Lessons learned were implemented in a revised test method protocol for the 2nd tank

Flow Configuration Zhejiang University

Flow Configuration WSTF

Figure 7 - NASA-WSTF Test and Measurement System Block Diagram

Typical Pressure Cycle Zhejiang University

Figure 13: Typical Zhejiang University Pressure Profiles (6 cycles/min)

Temperature Variations as a Function of Time (Zhejiang University)

Zero Carbon Energy Solutions

10/18/2015

Pressure Profile (WSTF)

Typical Pressure Profile

(1 cycle per min)

Cycle Temperature Open Ended

Pass thru configuration with inline chiller.
Temperatures reach steady state in about 30 minutes.

The boss temperature is lower than the intank temperature by about 0.28 °C

Dynamic Head vs Static Pressure

- ΔP between dynamic and static is 0.26 MPa (2.6 Bar)
 - Arguably a very small number ~1%
 FS for this work.
- ΔP for the deadended configuration was effectively 0.0

Temperature Profiles vs Flow Configuration

 $T_{boss} < T_{tank}$ & it gets worse with increasing number of cycles.

Room Temperature Effects on In Tank Fluid Temperature

- Boss Temperature is affected by the ambient temperature
 - Care needs to be taken to isolate the boss measurement
 - this was corrected on tank 2 at both facilities

In Tank Temperature vs Time

Zero Carbon Energy Solutions

In Tank Temperature vs Cycle

Temp. increase issystem dependent

- Temp. increase
 on a per cycle
 basis is roughly
 independent of
 cycle rate (every
 thing else being
 constant)
- Upper temperature limit reached after about ~250 cycles

Zero Carbon Energy Solutions

10/18/2015

Summary

- Test Method Protocol Defined
 - Based on proposed test sequences(i.e. SAE J2579, GTR, EIHP Rev 12B
- Successfully executed the protocol with similar results at two locations in the second trial
- The most difficult parameter to control was working fluid temperature in the tank
- In tank temperature increases per cycle almost independent of cycle frequency.
 - Is system dependent
- A carefully designed pass thru configuration with external temperature control enabled continuous operation.

Thank you.

Presentation End

Progress on Type IV Tank Testing Round Robin (RR)

IPHE RCSWG Meeting

September 12, 2013

Brussels - Belgium

1. Objective

- ◆ The purpose of IPHE round robin is to establish a harmonized test measurement method protocol that when applied around the world, consistency in the test measurements can be assured.
- ◆After the discussion in IPHE RCSWG, a round robin ambient pressure cycle tests for type IV tanks were conducted in the U.S. and China.
- This report will introduce the test in China.

