

Spherical Flame Acceleration in Lean Hydrogen-Air Flames

C.R. Bauwens, J.M. Bergthorson, and S.B. Dorofeev

6th International Conference on Hydrogen Safety Yokohama, Japan October 21st, 2015

Accidental Explosions

FM Global

Motivation – Accidental Explosions

- Flame propagation velocity key parameter to determine pressure that develop
- Cell formation can significantly increase propagation velocity
- Need a better understanding of how cells form and growth with flame
- Limited data on atmospheric pressure flames, especially at large-scale
 - Bradley et al. 2001, Kim et al., 2015

Background – Darrieus-Landau Instability

- Intrinsic instability due to expansion of burned gas
- Extensively studied
 - Experimentally
 - Manton et al. (1952), Bradley and Harper (1994), Clanet and Searby (1998), Law et al. (2005)...
 - Analytically
 - Darrieus (1938), Landau (1944), Markstein (1964), Istratov & Librovich (1969), Pelce and Clavin (1982), Bechtold and Matalon (1987)...

Background – Spherical Flames

- Initially flame stabilized by curvature and stretch
- At a critical radius, R₀, cells spontaneously form on flame surface
- Cell formation accompanied by rapid flame acceleration

Background – Spherical FA

- Acceleration continues indefinitely with increasing radius
- Self-similar theory Gostintsev et al. (1988)
 - Correlated large scale data
 - Found: $R = R_0 + At^{\alpha}$
 - Acceleration mechanism explained using fractal argument

Present Study – Hydrogen-Air

- Why lean hydrogen-air?
 - Strong thermal-diffusive instability
 - Small critical radius
 - Larger increases in flame speed for the same flame size
- Examined lean hydrogen-air concentrations

 $-\phi = 0.3 - 0.6$

Experimental Setup

- 64 m³ vented enclosure (4.6 x 4.6 x 3 m³)
- Constant pressure
- Quiescent mixtures
- Weak ignition source

Visualizing Hydrogen-Air Flames

- Direct optical measurements not possible
- Traditional schlieren not feasible at large scale
- Alternate method needed

Hydrogen Flame Image

Background Oriented Schlieren

Background Pattern

Background Oriented Schlieren

Raw Images

BOS Image

FM Global Background Oriented Schlieren

Front Tracking

- Maximize images into virtual open shutter
- Difference images across multiple frames
- Calculate radius from flame cross-section

Temporal Smoothing

- Average flame surface over time (multiple images)
- Resize flame to a common length scale to eliminate motion blur

Effect of Concentration

 $\phi = 0.33$ $\phi = 0.46$ $\phi = 0.57$

Results – Hydrogen-air ϕ = 0.49

Results

- Laminar burning velocity
 - Good agreement
 with past studies

Results

- Critical radius
 - R_0 decreased linearly with \mathcal{L}_M (and ϕ)

Discussion

- Flame selfacceleration
 - Normalized curves all collapse to single relation
 - No oscillations observed

Discussion

 Fractal excess constant across full range

 $\beta = 0.243 \pm 0.005$

• Equivalent to fractal exponent $\alpha = 1.32$

Discussion

- Flame selfacceleration results in large increase in u_{eff}
- Flame velocity doubles when $R/R_0 = 16$ (R = 0.3 - 0.5 m)

Summary/Conclusions

- BOS used to characterize flame acceleration
 - Laminar burning velocities agrees with existing data
 - Critical radius decreases with concentration
 - Fractal excess constant across full range of concentrations studied
- Flame self-acceleration must be considered when modeling lean hydrogen-air flames at large scale
 - Laminar burning velocity alone will significantly under-predict flame speed

Questions?

