

Warsaw University of Technology Faculty of Power and Aeronautical Engineering Institute of Heat Engineering

Experimental determination of critical conditions for hydrogen-air detonation propagation in partially confined geometry

Rudy* W., Dziubanii K., Zbikowski M., Teodorczyk A.

*wrudy@itc.pw.edu.pl

International Conference on Hydrogen Safety, Yokohama, Japan 19.10.2015

Presentation plan

- 1. Introduction
- 2. Experimental stand and procedure
- 3. Results
- 4. Conclusions

1. Introduction

Detonations in closed channels (planar detonation):

- round: minimum tube diameter $d^* \approx \lambda$
- rectangular: minimum channel height: $h^* \approx \lambda$

But:

- hydrogen released in containments accumulates at the top of the room
- such scenarios might be encountered in containments of nuclear reactors, in tunnels or in room geometries
- the ignition, deflagration and following DDT of such mixtures in geometries, open from below, can lead to strong pressure loads and to structural damage.

1. Introduction cont.

Objectives:

- <u>Precisely define the critical height h^* of semi-confined channel where stable detonation may propagate in mixtures with various H_2 concentration in air</u>
- Find the critical critical relation h^*/λ , where λ is the detonation cell size

To obtain the described objectives the following experimental plan was prepared:

- 1) Build and test the experimental stand
- Carry out the experiments in a smooth tube to measure detonation cell sizes λ and detonation velocities as a function of mixture composition,
- Carry out the experiments in semi-confined channels with various channel heights h to find the critical h^* and h^*/λ relation,

Smooth tube:

$$\lambda = f(\%H_2),$$

$$V = f(\%H_2),$$

Semi-open channel:

det. Propagation,
$$f(h) \rightarrow h^*$$

 $h^* = f(\%H_2),$
 $\Delta V^* = f(\%H_2)$

2. Experimental stand and procedure

- Rectangular tube 0.11 x 0.11 x 3 m: 1-m long acceleration section, 2-m long test section
- 5-6 pairs of pressure gauges (PCB) and ionisation probes + 1 pressure gauge as a trigger
- Data sampling 5 MHz per channel
- test section divided into two volumes by 3 μm plastic film (HDPE), variable upper channel height h
- Mixtures prepared by partial pressure method

Procedure:

- 1. Gas evacuation
- 2. Filling the whole volume with flammable mixture
- 3. Gas exchange in volume confined by the plastic film, process controlled by O₂ conc. sensor
- 4. Ignition w/ data acquisition
- 5. Stand disassembling and cleaning
- 6. Stand assembling
- 7. Starting new experiment

2. Experimental stand and procedure cont.

3. Results Smooth tube experiments, initial conditions: P = 0.1 MPa, T = 298 K, 25% H₂ 29.6% H₂ 40% H₂ P [MPa] P [MPa] 40% H₂, smooth tube Exp_01 29.6% H₂, smooth tube 3 2 0.4 IP signal [V] time [ms] time [ms] IP signal [V] time [ms] 0.6 1.25 0.25 0.75 1.25 1.25 25% H₂ 29.6% H₂ 40% H, 2250 2250 V [m/s] V [m/s] V [m/s] CJ speed CJ speed 2000 2000 2000 CJ speed 1750 Exp_01 1750 1750 Exp_01 Exp_01 Exp_02 <u></u> Exp 02 1500 1500 1500 -Exp_03 ----Exp_04 -Exp_03 1250 1250 1250 products sound speed products sound speed products sound speed 1000 1000 1000 2,5 L[m] 3 2,5 L[m] 3 2,5 L[m] 3 0,5 1,5 0,5 1,5

3. Results cont. Experiments in smooth tube Sooted foil cell size histograms λ vs. %H₂ (references) 25% H_2 , median $\lambda = 11$ mm λ[mm] # of cells average λ = 11.12 mm 10 25% H₂ Guirao et al. [17] Ciccarelli et al. [18] × Bozier et al. [19] 29.6% H₂, median λ = 8 mm, # of cells - Ciccarelli et al. [20] average \u03b1 = 7.69 mm % H2 in air this work 25 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 20 2400 V [m/s] 2200 29.6% H₂ 2000 -CJ speed (Cantera calc.) 1800 40% H₂, median λ = 8 mm × Experimental points average \u00b1=8.24 mm 1600 20 1400 1200 % H₂ in air 40% H₂ 1000 20% 25% 30% 35% 40% 45%

3. Results cont.

Experiments in semi-confined channels

Detonation propagating up to the tube end

- High pressure peaks ~(2-2.5) MPa
- Simultaneous, steep ion probes indications
- Steep pressure drop (products expansion)
- Following shock reflections (bottom wall)

Detonation failure in test section

- Lower pressure peaks ~(1.2-1.5) MPa
- Delayed ion probes indications
- Mild pressure drop
- Weak shock reflections

3. Results cont.

Experiments in semi-confined channels

 $\Delta V^* = 6.2\%$

 $\Lambda V^* = 7.4\%$

 $h^* = 25.0 \text{ mm}$ $\Delta V^* = 8.2\%$

- Clearly distinguishable cases with various semi-open channel heights
- Progressive increase in detonation velocity deficit as the semi-open channel height decreases, result of products expansion and transverse waves attenuation in the bottom, air-filled volume
- h* increase as mixture reactivity decreases

3. Results cont.

H ₂ concentration in air	25%	29.6 %	40 %
h* [mm]	40.0	22.5	25
λ_{med} [mm]	11	8	8
λ_{ave} [mm]	11.12	7.69	8.24
$h*/\lambda_{med}$ [-]	3.64	2.81	3.13
$h*/\lambda_{ave}$ [-]	3.6	2.93	3.03>
ΔV* [%]	6.2	7.4	8.2

Critical h*/ λ ratio is very close to 3 for stoichiometric H₂-air mixture and increases approx. linearly with channel height increase for less ractive mixtures

Similar relation obtained for H_2 - CH_4 -air mixtures (ϕ =1), higher critical h*, corresponding h*/ λ and Δv * observed for higher CH_4 fraction in fuel.

(XXII International Symposium on Combustion Processes, 22-25.09.2015, Kroczyce, Poland)

CH ₄ concentration in fuel 0% 5 % 10%	_
h* [mm] 22.5 32.5 47.5	
$\lambda_{\text{med}} [\text{mm}]$ 8 10.5 14	
$\lambda_{\text{ave}} [\text{mm}]$ 7.69 10.6 14.2	
$h*/\lambda_{mod}$ [-] 2.81 3.09 3.39	>
h^*/λ_{ave} [-] 2.93 3.06 3.35)
$\Delta V^* [\%]$ 7.4 9 11	

4. Summary and conclucions

- This presentation showed experimental results of detonation propagating in flat semi-confined channels in H₂-air mixtures.
- Mixtures investigated: 25%, 29.6% and 40% of H_2 in air at initial conditions: P = 0.1 MPa, T = 298 K
- Critical height of the semi-confined channel h^* was determined for each mixture
- Critical ratio h^*/λ is very close to 3 for stoichiometric H_2 —air mixture and increases approximately linearly with channel height h for less reactive mixtures
- The progressive increase in detonation velocity deficit was observed (as h → h*) caused by the rapid expansion of the combustion products in the bottom air-filled volume.
 Maximum detonation velocity deficit equal to 8.2% observed for 40% H₂ mixture for h* = 40 mm
- Wider range of H_2 -air mixtures was impossible to investigate due to the geometrical limitations of the experimental setup so similar experiments should be performed in larger scale to confirm linear h to $h*/\lambda$ relation

Funding for this investigation was provided by The Dean of Faculty of Power and Aeronautical Engineering of Warsaw University of Technology, project no. 504/01503/1131/42.

Warsaw University of Technology Faculty of Power and Aeronautical Engineering Institute of Heat Engineering

Experimental determination of critical conditions for hydrogen-air detonation propagation in partially confined geometry

Rudy W., Dziubanii K., Zbikowski M., Teodorczyk A.

International Conference on Hydrogen Safety, Yokohama, Japan 19.10.2015