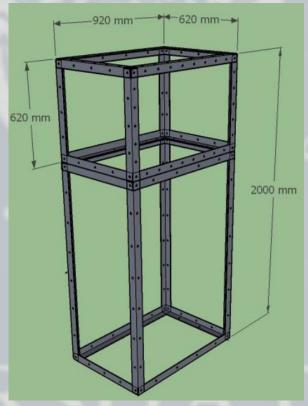


EXPERIMENTAL MEASUREMENTS OF STRUCTURAL DISPLACEMENT DURING HYDROGEN VENTED DEFLAGRATIONS FOR FE MODEL VALIDATION

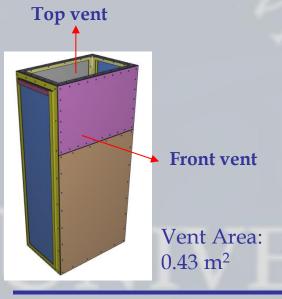
T. Pini, A. Grønsund Hanssen, Martino Schiavetti, Marco Carcassi

Department of Civil and Industrial Engineering (DICI)
University of Pisa


Presentation overview:

- Small Scale Enclosure
- Experimental measurements
- •FE model
- Comparison between data and FE model
- Conclusions

Small Scale Enclosure


Investigation of vented hydrogen explosions in installations such as gas cabinets, cylinder enclosures, dispensers and backup power systems

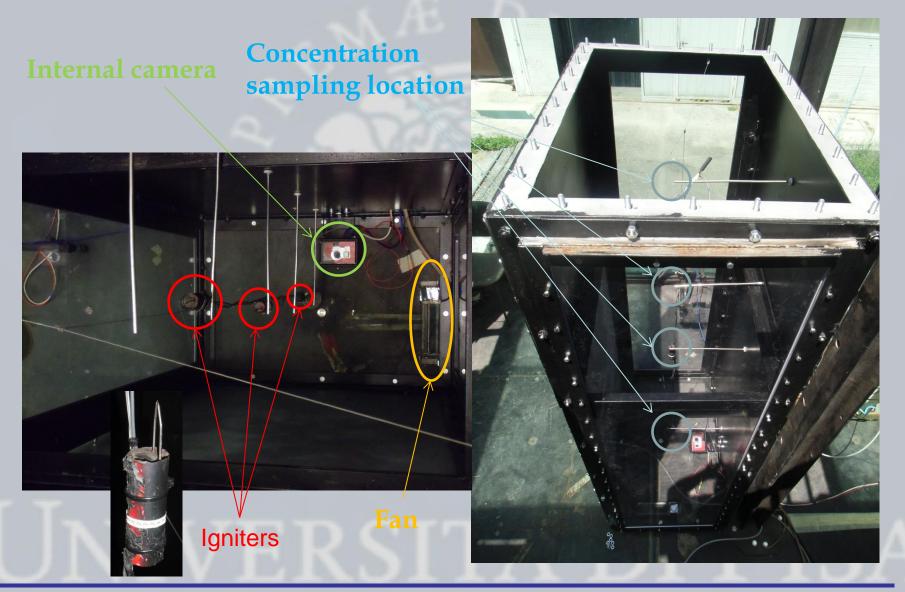
ID109, Homogeneous
hydrogen deflagrations in
small scale enclosure.
Experimental results.
M. Schiavetti, T. Pini,
M. Carcassi

Variables under investigation

- Hydrogen concentration: between 10%vol. and 18%vol.
- Vent location: on the top and on the upper front wall
- Vent type: plastic sheets in different configurations and three different types of FIKE explosion panel
- **Ignition location**: 0.5 m, 1 m and 1.5 m from the floor along the centreline of the enclosure
- Internal congestion: empty enclosure, 1 bottle and 3 bottles placed inside

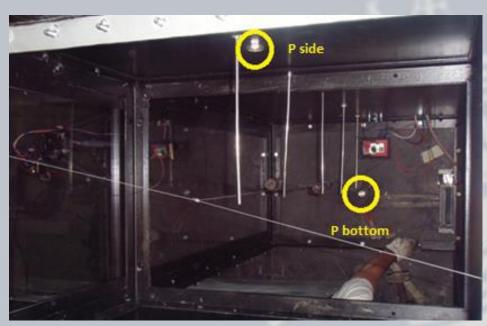
3 Plastic sheets

3 FIKE vents type



Bottles dimensions:

- volume 50 liters
- height 1.68 m
- diameter 0.23 m



Small Scale Enclosure

Small Scale Enclosure - Pressure transducers

P side

Kistler piezo resistive Transducers

Adquisition frequency: 5 kHz

P bottom

Displacement measurements methods

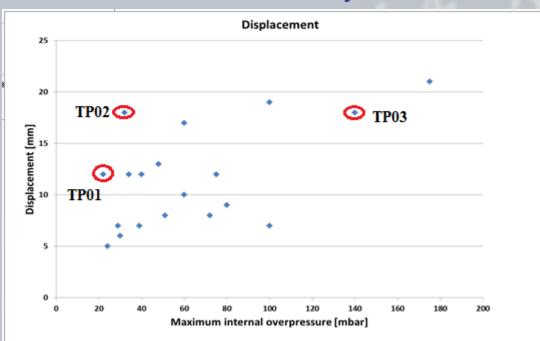
Antenna

- Simplicity
- Poor accuracy
- No displacement- time histories recording

Keyence Laser Sensor IL-S025

- Displacement- time histories recording
- 5 kHz acquisition
- 1 μm repeatability

Displacement measurement test plates and positions



Measurement method	Test plate	Plate thickness [mm]	Sensor location	TEST # (interval)		
Antenna	Lower	2	Plate centre	TP1-TP20		
	Lower	5		TP21-TP29		
Laser			Plate centre	TP65-TP70		
			91.3 cm	TP30-TP33		
			from floor	11 00 11 00		
			115.45 cm	TP34-TP36		
			from floor	TP45-TP52		
	Upper	5		TP37-TP44		
			Plate centre	TP53-TP64		
				TP71-TP76		

Displacement measurements experimental matrix:

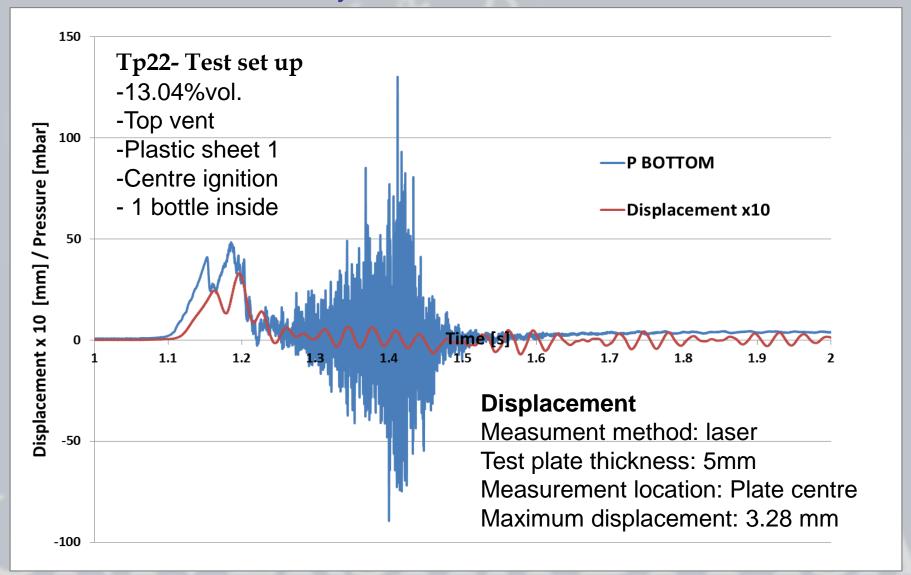
- 2 thicknesses used (2 mm and 5 mm)
- 4 sensor locations

Data Analysis - Mechanical measurement

Problems found after preliminary measurements:

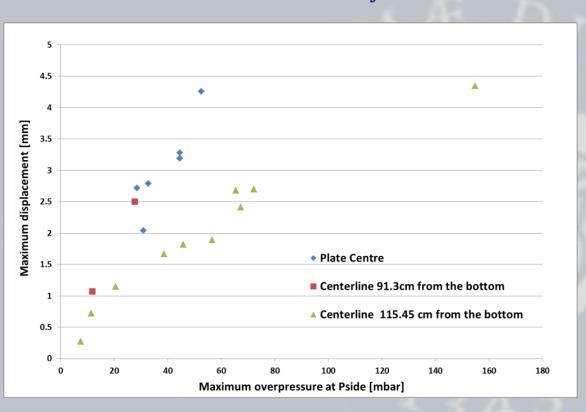
- 2 mm thick plate undergoes plastic deformation at very low overpressures
- Plastic deformation affects the displacement measurements of the following tests

Test plate thickness: 2 mm

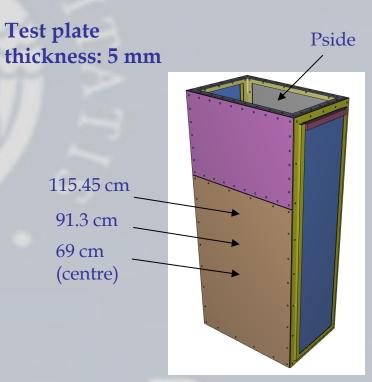

Measurement location: 69 cm from floor (centre)

Solutions taken to provide more reliable data:

- 2 mm thick plate was substituted with 5 mm thick plate which shows an elastic response to the applied internal pressure
- The displacement measurement was performed using a <u>laser</u> sensor

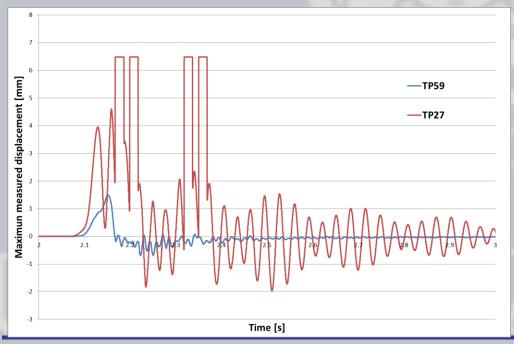


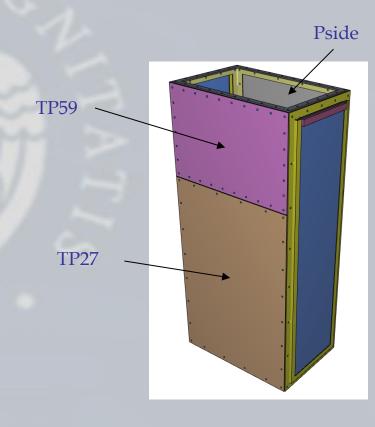
Data Analysis - Laser measurement

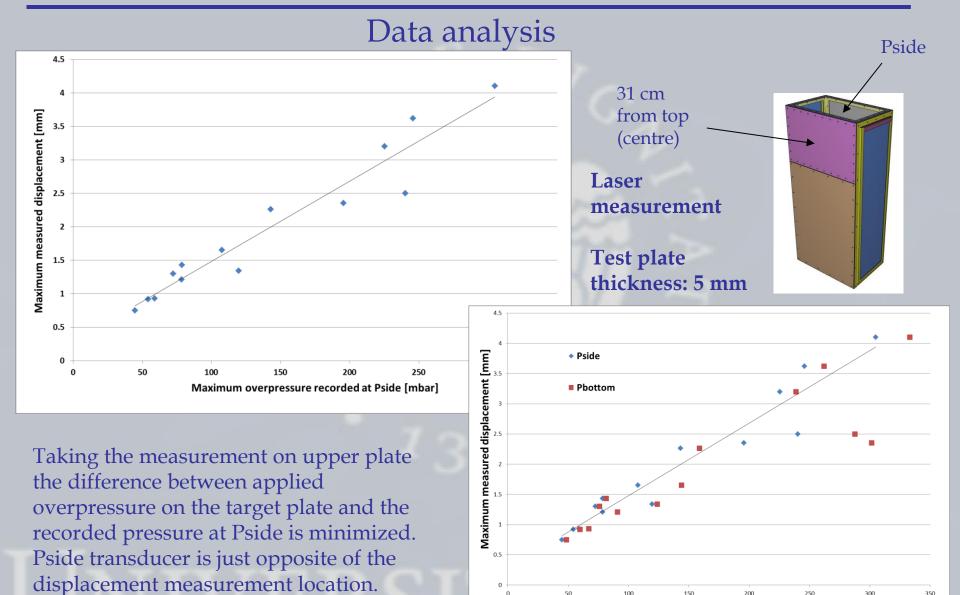


Data Analysis - Laser measurement

The laser was moved upward along the centerline to avoid sensor saturation at high overpressure.



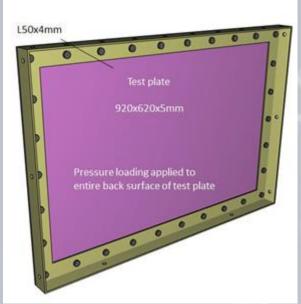

The results are quite scattered along a theoretical straight line. Due to extremely dynamic nature of the deflagration the overpressure measured in the two locations (Pside, Pbottom) are not always representative of the overpressure applied to the lower front plate


Data analysis

Test	TP27
Obstacle	1 bottle
configuration	
Ignition	Bottom Ignition (#2)
location	
Vent location	Top vent
Average H ₂	15.97 % vol.
concentration	
Plate under	Lower front plate
investigation	
Displacement	69 cm from the
measurement	bottom (plate
location	centre) "

Test	TP59				
Obstacle	1 bottle				
configuration					
Ignition	Bottom Ignition (#2)				
location					
Vent location	Top vent				
Average H ₂	15.9 % vol.				
concentration					
Plate under	Upper front plate				
investigation					
Displacement	31 cm from top				
measurement	(plate centre)				
location	(piate certife)				

Maximum overpressure recorded [mbar]


200

300

150

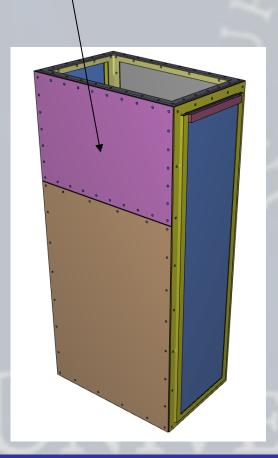
Video

# Test	Avg. conc [%vol.]	Vent location	Vent type	Ignition location	Obstacle conf.	Test plate thick. [mm]	Laser location
<u>TP55</u>	17.8	Тор	Plastic sheet 1	Bottom	3 bottles	5	Upper plate centre
<u>TP56</u>	14	Тор	FIKE 2	Bottom	3 bottles	5	Upper plate centre
<u>TP66</u>	15.8	Front	Plastic sheet 1	Centre	1 bottle	5	Lower plate centre

Test plate front face FE mesh with M10 bolts, whiskers and nuts

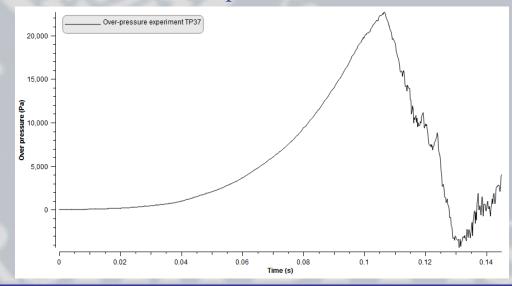
FE model

A finite element model representing the upper was developed by using IMPETUS Afea Solver.

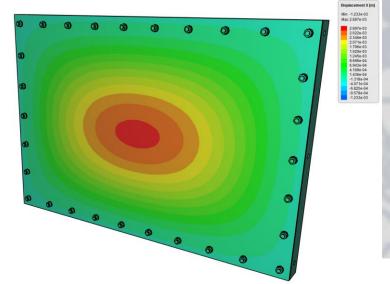

Main elements of FE model:

- main side-wall test plate (5 mm)
- main rectangular frame consisting of 4 mm thick L-profiles with outer flange dimensions 50 mm (L50x4mm)
- 30 bolts with 10 mm OD
- 30 corresponding nuts
- 30 corresponding washers
- rear end of the main frame was constrained

FE Simulation set up

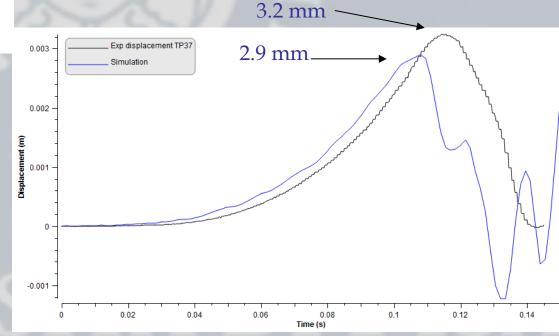

Test Id	Average H ₂ Conc.	Vent location	Vent type	Ignition location	Obstacle conf.	Test plate #	Test plate thick.	Displac. Measur. method	Displac. Measur. Location
TP37	14.1%	Top vent	FIKE Vent 3	Bottom	3 bottles	(2)	5 mm	Laser	Plate centre

Displacement measurement

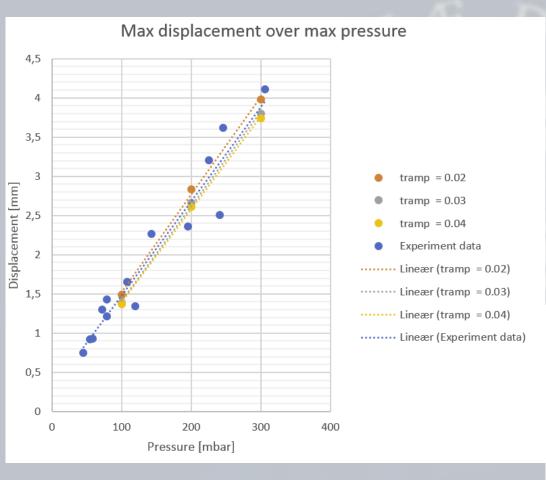


The simulation was done in two steps:

- Step 1: bolts pre-loaded to an axial stress of 200 MPa (representing the 20 Nm pre-torque).
- Step 2: TP37 pressure-time curve was imported and used to load the complete rear surface of the test plate

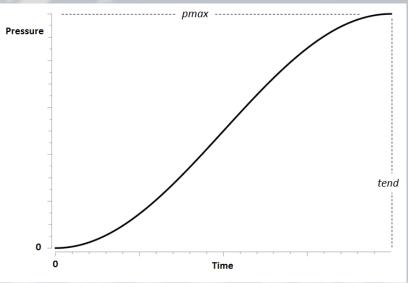


FE Simulation results



Plof the displacement field of the test plate at time t=0.102 s.

Simulation vs experiment: Displacement-time curve The displacement-time curve of the centre of the test plate was extracted and compared to experiment



FE Simulation results

Pressure ramps were simulated by using a combination of p_{max} and t_{end} to characterize the smooth ramp up below

 p_{max} [100,200,300] [mbar] t_{end} [0.02, 0.03, 0.04] [s]

Conclusions

Experimental measurements

- 5 mm thick plate is necessary to avoid metal plasticization that can affect the following measures;
- the measurement location has to be representative of pressure with respect to pressure transducer in order to ensure that the dynamic behavior of deflagration does not affect the results.

Validation of numerical model

The mesh density, element type and boundary conditions appears to represent this experimental test set-up well. (For larger pressure loads involving possible plasticity and material failure it would have been necessary to use more representative material models and possibly a finer mesh). Furthermore the pressure signal is not sampled directly at the location of the displacement measurement introducing an error whenever the dynamic of the deflagration causes spatial differences inside the enclosure.

The next planned experimental campaign that UNIPI, with help of IMPETUS and FIKE, will provide additional data useful to validate FE model in a bigger variety of conditions and to improve his predictive capacity.

HySEA CONSORTIUM

GEXCON

ACKNOWLEDGEMENTS

The HySEA project received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) under grant agreement No. 671461.

This Joint Undertaking received support from the European Union's Horizon 2020 research and innovation programme and United Kingdom, Italy, Belgium and Norway.

THANK YOU FOR YOUR ATTENTION