A hydrogen cylinder was initially located in an adjacent laboratory, with tubing going through the wall into the laboratory in use. When the cylinder was moved to the laboratory in use, a required leak check was not performed. Unfortunately, a leak had developed that was sufficient to cause an accumulation of hydrogen to a level above the Lower Flammability Limit. The hydrogen ignited when a computer power plug was pulled from an outlet. The exact configuration of the leak location and the outlet plug is unknown.

During preparation of a new hydrogen storage material, ammonia borane (AB) loaded onto mesoporous carbon, an unexpected incident was observed. As with all procedures with new materials the work is conducted on a small scale and in a laboratory fume hood. They followed the procedures that they had used for absorption of ammonia borane onto mesoporous silica without incident.

To absorb the solid AB into a scaffold material they dissolve AB in a dry aprotic polar solvent, THF. The saturated solution of AB in THF is added to the mesoporous carbon material in a round bottom flask, stirred for 10 minutes to saturate the mesoporous scaffold with AB and then the solvent is slowly removed under vacuum. At this point the sample is assumed to be prepared and ready for transfer to a sample view more

A fire erupted from a tanker truck delivering liquid hydrogen to a factory. The ignition of leaking vapors created a plume of flames that rose dozens of feet into the air. The flames receded within seconds, leaving the truck with little damage and its driver unharmed.

The truck was off-loading hydrogen into a tank behind the plant when the incident occurred. The plant reported no delays in its production. It uses the hydrogen in various processes.

On site personnel reported that hydrogen vapors released through a vent in the tank somehow ignited. The driver sealed off the vent within seconds and stopped the blaze. Fire officials and the two companies are now trying to determine what sparked the vapors. The safety equipment in place prevented the fire from spreading into view more

A plume of hydrogen gas escaped from the offloading valve of a liquid hydrogen delivery truck while transporting hydrogen to a commercial facility. The plume ignited, resulting in a flash and concussion loud enough to be heard inside the nearby building and to set off the building’s seismic event detectors. A small amount of hydrogen gas continued to escape from the trailer tank and burn until a company specialist arrived to manually shut off a critical valve almost eight hours later. In the mean time, emergency response crews called to the scene sprayed water across the hydrogen tank as a precautionary cooling measure. The actual cause of this incident appears to have been primarily driver error. A number of steps required as part of the standard safety procedure were either view more

A researcher was working with hydrogen storage materials in a laboratory. Several other researchers were working in adjacent laboratories.

The researcher had prepared a sample of aluminum deuteride, AlD3, by reacting lithium aluminum deuteride and aluminum chloride in diethyl ether. The actual composition/phase of the material synthesized was unknown, but the researcher had attempted to produce the gamma phase of aluminum deuteride. The synthesis steps used to produce the material were complete and the researcher attempted to seal the material in a glass ampoule for offsite shipment and analysis. The sample size was approximately 1 gram.

The ampoule with the sample had previously been placed under vacuum and had been isolated from the atmosphere. The process for sealing view more

An incident occurred when Ti-doped sodium alanate was exposed to air, apparently resulting in an unstable compound that experienced a rapid exothermic reaction.

The sample consisted of mechanically milled NaAlH4 with 4% TiCl3 dopant which was prepared in an argon atmosphere. The sample was sealed and placed in the probe head of an NMR magic angle-spinning (MAS) rotor and spun at approximately 9,000-13,000 rpm. During the process, the sealing cap dislodged and exposed the sample to ambient air for a little less than 24 hours. When discovered, the sample was visually inspected and showed no evidence of oxidation. The sample was re-capped and returned to an argon environment for removal. Most of the sample material was removed using a small stainless steel needle, but a residual view more

A sulfur deprivation test was conducted in a sealed 250 ml vessel. More hydrogen was generated in this process than was anticipated, and the vessel cracked.

A hydrogen leak originating from a tank within a high-pressure storage unit serving a hydrogen vehicle fueling station resulted in fire and explosion. Emergency responders were on scene within 7 minutes and contained the fire within 3hours. No damage was reported to the separate forecourt H2 dispenser or to other major station components within the station backcourt compound. No personnel injuries resulted directly from the fire and explosion -a nearby vehicle airbag triggered due to the explosion pressure, with minor injuries to the vehicle occupants. Immediately, until root cause was determined, all potentially affected H2 stations were idled.

The root cause of the incident was subsequently identified as an assembly error of a specific plug in a hydrogen tank in the high- view more

A sealed, unclassified electrical control enclosure, part of a listed and certified force-ventilated commercial hydrogen processing unit enclosure, exploded when the equipment manufacturer’s technician pressed the machine stop switch to complete factory commissioning procedure. The technician was forcefully hit by the flying metal panel holding the switch and sustained serious injuries requiring lengthy hospitalization and rehabilitation. Two were hospitalized. Two others were injured. Significant damage to the indoor facility also occurred.

An independent investigation found that drain lines from the external hydrogen vent stack drain trap and the electrical control enclosure cooler/condenser drain were interconnected into a single external sealed floor drain, in a manner not view more

The sensing diaphragm of a pressure transducer (PT), as supplied on an outdoor hydrogen compressor, unexpectedly ruptured and released approximately 0.1 kilograms hydrogen to atmosphere from the compressor discharge line. At time of incident, personnel nearby were alerted by a loud 'pop' and dust disturbance. Simultaneously, the facility monitoring system detected loss of the PT signal and initiated equipment shutdown. Facility personnel then closed isolation hand valves to stop the leak, locked and tagged out the equipment, and restricted the area. The failed component, a cigar type PT rated to 20,000 psi, originally supplied and installed by the manufacturer as part of the compressor package, was removed and inspected. Inspection revealed severed wires, a view more