The hydrogen fueling dispenser nozzle could not be completely disconnected from the vehicle after refueling. It was finally disconnected after trying several times. The cover of the nozzle interfered with the disconnection operation. No malfunction of the nozzle was found. It can be easily disconnected when it is withdrawn along its axis. Sometimes misalignment occurred due to the weight of the dispenser hose.

A hydrogen reformer furnace at a refinery was shutdown for maintenance to remove and cap the inlet and outlet headers of some radiant tubes that had previously developed hot spots and been isolated by externally pinching them off at the inlet. A decision was made to leave steam in the steam-generating circuit during this maintenance operation to prevent freezing. After maintenance was complete, the startup procedure required the furnace to be first heated up to 350°C (662°F) prior to introducing 4136 kPa (600 psig) steam into the radiant tubes. Just after the 4136 kPa (600 psig) startup steam was introduced into the reformer furnace inlet, the control room alarm journal reported an extreme positive pressure spike at the same time a single loud bang was reported by the operations view more

A student cleaned catalyst that was being used for a fuel cell membrane electrode assembly from a spatula. He then placed the contaminated paper towel into a waste container that contained other waste that was wet with alcohol. The alcohol reacted with the catalyst, igniting a fire within the waste container. The fire was extinguished with a beaker of water.

During a refueling event, the operator activated the fueling lever in the wrong sequence. The vehicle filled to proper pressure, but filled faster than normal. Under different circumstances, this could have resulted in overheating of the receiving fuel tank.

The contractor was replacing a needle valve and a check valve on the nitrogen purge line to the dispenser because of a small leak at the connection between the needle valve and the check valve. On reinstalling the valves, the contractor installed the check valve backwards, causing the pressure disk in the regulator to fail, venting about 1000 psig hydrogen into the air for about 10 seconds. This was found during testing of the contractor's work before the system was returned to normal service.

On a given day personnel were removing a blind hub that had been used to temporarily isolate a portion of a gaseous hydrogen system. As a result of a sudden release of 2,800 psig gaseous nitrogen, sand and debris kicked up from the concrete pad and caused minor injury to two technicians.

During the investigation, it was found that:

The temporary configuration change to the gaseous hydrogen system was initiated on multiple work orders and by different individuals. There was no single document that documented the temporary system configuration.
The procedure for performing the work was written using a drawing that had not been updated to show the actual system configuration. Verbal field direction was given when it was discovered the system was not configured per view more

An unplanned shutdown of the hydrogen supply system occurred, affecting the hydrogen furnaces in the plant. The apparent cause was an inadvertent valve closing, which was contrary to the written procedure.

A preventative maintenance activity was being conducted on the hydrogen gas system. Shortly after starting that work, various hydrogen gas users notified the emergency response personnel that the hydrogen supply safety alarms sounded, indicating an interruption of the hydrogen gas supply. As a result, the hydrogen furnaces shut down. This shut down is an automated process which injects an inert gas (nitrogen or argon) to prevent the introduction of oxygen and its mixing with any hydrogen gas. All shut downs functioned as designed. As a precautionary measure, fire protection view more

Installation of a 9000-gallon liquid hydrogen storage tank by a lessee at a building has not been evaluated for effect on the Safety Authorization Basis (SAB) of nearby facilities.

During review of an Emergency Management Hazard Assessment document, a reviewer questioned whether the SAB of nearby facilities had been reviewed for the effect of the installed 9000-gallon liquid hydrogen tank. Reviews by the facility management and facility safety personnel confirmed the evaluations have not been performed.

The direct cause was determined to be a management problem, with policy not adequately defined, disseminated, or enforced to integrate potential lessee hazards into the facility safety program documentation on the 9000-gallon hydrogen tank and delivery. The existing policy view more

A pressure relief device (PRD) valve failed on a high-pressure storage tube at a hydrogen fueling station, causing the release of approximately 300 kilograms of hydrogen gas. The gas ignited at the exit of the vent pipe and burned for 2-1/2 hours until technicians were permitted by the local fire department to enter the station and stop the flow of gas. During this incident the fire department evacuated nearby businesses and an elementary school, closed adjacent streets, and ordered a high school to shelter in place.

There were no injuries and very little property damage. The corrugated roof on an adjacent canopy over a fueling dispenser was slightly singed by the escaping hydrogen flame, causing less than $300 in damage.

The station's operating systems worked as view more

A significant hydrogen leak occurred during refueling of the onboard hydrogen storage tank of a fuel cell-powered lift truck while it was completely depowered. The in-tank shutoff solenoid valve had recently been replaced, and this was the initial refueling event after the replacement. The fuel zone access panel was removed to allow constant visual leak checking with Snoop leak-detection fluid. The event occurred during the final pressure testing of the repaired system when an O-ring failed at approximately 4500 psi, releasing the entire contents of the hydrogen tank in about 10 minutes. The dispenser hose/nozzle was immediately disconnected, and the leak location was quickly isolated to the tank/valve interface. A 30-foot boundary around the lift truck was cleared of personnel and view more

Key:

  • = No Ignition
  • = Explosion
  • = Fire
Hydrogen Incident Summaries by Equipment and Primary Cause/Issue
Equipment / Cause Equipment Design or Selection Component Failure Operational Error Installation or Maintenance Inadequate Gas or Flame Detection Emergency Shutdown Response Other or Unknown
Hydrogen Gas Metal Cylinder or Regulator   3/31/2012
4/30/1995
2/6/2013
4/26/2010 12/31/1969     3/17/1999
11/1/2001
12/23/2003
Piping/Valves 4/4/2002
2/2/2008
5/11/1999
4/20/1987
11/4/1997
12/31/1969
8/19/1986
7/27/1991
12/19/2004
2/6/2008
10/3/2008
4/5/2006
5/1/2007
9/19/2007
10/31/1980
2/7/2009 1/24/1999
2/24/2006
6/8/1998
12/31/1969
2/7/2009

9/1/1992
10/31/1980

10/3/2008  
Tubing/Fittings/Hose   9/23/1999
8/2/2004
8/6/2008
9/19/2007
1/1/1982 9/30/2004
10/7/2005
  10/7/2005  
Compressor   10/5/2009
6/10/2007
8/21/2008
1/15/2019
    10/5/2009 8/21/2008  
Liquid Hydrogen Tank or Delivery Truck 4/27/1989 12/19/2004
1/19/2009
8/6/2004 12/31/1969   1/1/1974 12/17/2004
Pressure Relief Device 7/25/2013
5/4/2012
1/15/2002
1/08/2007
12/31/1969        
Instrument 1/15/2019 3/17/1999
12/31/1969
2/6/2013
    11/13/73    
Hydrogen Generation Equipment 7/27/1999     10/23/2001      
Vehicle or Lift Truck   7/21/2011         2/8/2011
12/9/2010
Fuel Dispenser   8/2/2004
5/1/2007
6/11/2007
9/19/2007
  2/24/2006
1/22/2009
     
Fuel Cell Stack            

5/3/2004
12/9/2010
2/8/2011

Hydrogen Cooled Generator       12/31/1969
2/7/2009
     
Other (floor drain, lab
anaerobic chamber,
heated glassware,
test chamber,
gaseous hydrogen
composite cylinder,
delivery truck)
  11/14/1994
7/21/2011
7/27/1999
6/28/2010
8/21/2008
12/31/1969
3/22/2018
    6/10/2019
  • = No Ignition
  • = Explosion
  • = Fire