A partial pressure sensor for an automated gas environment system (AGES) was not functioning correctly for pure hydrogen flow. While personnel were troubleshooting the problem, a burst disk ruptured resulting in a leak of hydrogen gas and actuation of a flammable gas alarm.

System troubleshooting involved the installation of a small hydrogen gas cylinder and temporary manual valve in an engineered ventilated enclosure adjacent to an instrument sample well. A burst disk associated with the temporary manual valve ruptured upon opening of the gas cylinder valve. The vented gas, exhausting through an engineered exhaust system, triggered the flammable gas detector. Personnel promptly evacuated the area in accordance with established procedures. Appropriate personnel responded to the view more

A pressure relief device (PRD) valve failed on a high-pressure storage tube at a hydrogen fueling station, causing the release of approximately 300 kilograms of hydrogen gas. The gas ignited at the exit of the vent pipe and burned for 2-1/2 hours until technicians were permitted by the local fire department to enter the station and stop the flow of gas. During this incident the fire department evacuated nearby businesses and an elementary school, closed adjacent streets, and ordered a high school to shelter in place.

There were no injuries and very little property damage. The corrugated roof on an adjacent canopy over a fueling dispenser was slightly singed by the escaping hydrogen flame, causing less than $300 in damage.

The station's operating systems worked as view more

A rupture disc blew on a 20,000-gallon liquid hydrogen tank, causing the vent stack to exhaust cold gaseous hydrogen. Emergency responders were called to the scene. To stabilize the tank, the remaining hydrogen was removed from the tank except for a small volume in the heel of the tank that could not be removed manually. The tank vacuum was lost. Firemen sprayed the tank with water and directed a stream onto the fire exiting the vent stack. The water was channeled directly into the open vent stack, and the exiting residual hydrogen gas (between -423 F and -402 F) caused the water in the vent stack to freeze. The water freezing caused the vent stack to be sealed off, disabling the only exit for the cold hydrogen gas. After a time, the residual hydrogen gas in the tank warmed up, causing view more

An operation to increase the pressure within a hydrogen tube-trailer to 6000 psig was in progress when a burst disk failed at approximately 5200 psig and hydrogen was released. A vent line attached to the burst disk was not sufficiently anchored and bent outward violently from the thrust of the release over an approximate 4-inch moment arm, causing considerable damage to the adjacent vent system components. The operation is conducted with personnel present, but fortunately no one was in proximity when the burst disk failed.

Following the incident, the damaged portion of the tube bank, consisting of 6 tubes, was isolated by valves on the system manifold. The operation was resumed with the unaffected portion of the tube bank, possessing another 18 tubes, until a second burst disk view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more