What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

A fire occurred in a hydrogen storage facility. The fire was reported by an employee who saw the fire start after he had aligned valves at the hydrogen storage facility in preparation for putting the hydrogen injection system into service. The employee escaped injury because he was wearing fire-retardant protective clothing and was able to quickly scale a 7-foot-high fence enclosing the hydrogen area. The local fire brigade was dispatched and offsite fire fighting assistance was requested. Upon reaching the scene, the local fire department reported seeing a large hydrogen-fueled fire in the vicinity of the hydrogen tube trailer unit. The heat of the fire potentially endangered the nearby hydrogen storage tanks. The onsite fire department, with offsite fire fighting support, fought the view more

The bulkhead between a liquid hydrogen tank and a liquid oxygen tank failed due to a series of events. Air services to the building were shut down for repairs and the facility had switched to an emergency nitrogen supply. Failure to switch back to service air when it became available, led to the mishap.

The emergency supply became depleted and two valves in the normal nitrogen purge system failed in the open position, releasing the high-pressure nitrogen gas from the manifold into the liquid hydrogen tank. The gas flow raised the liquid hydrogen tank pressure to 4.5 psig. That was sufficient to rupture the bulkhead wall.

Incident Synopsis
During development tests, a gaseous H2 test tank was over pressurized and ruptured. The tank dome was destroyed.

Cause
The pressure relief valves were set too high. In addition, the tank was not depressurized while being worked on. Safe distances, as required by the procedures for personnel safety, were not followed.

In the fall of 2007, the operations team began a procedure (a written procedure was being followed) to sample the liquid hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess gaseous hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003.

The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight-inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic gaseous nitrogen (GN2) systems in the view more