CHECK OUT OUR MOST RELEVANT INCIDENT LISTINGS! 

Disclaimer: The Lessons Learned Database includes the incidents that were voluntarily submitted. The database is not a comprehensive source for all incidents that have occurred.

Redundant safety systems prevented this event from becoming an incident. The 1%-hydrogen-concentration-level-triggered fan was backed up by a 2%-hydrogen-concentration alarm. The alarm is continuously monitored (24/7) by a remote Network…

The following corrective actions have been taken:

The non-return valve was dismantled, cleaned, and tested. Following positive testing, the system was restarted and pressurized without any further malfunctioning.
The hydrogen…

Utilize a Six Sigma Black Belt to statistically evaluate LFL monitor reliability and determine the failure rate based on the existing technology.

Revise the tank uncertainty calculation and surveillance to include a wider "Required…

Frequently inspect and maintain all elements of hydrogen-related systems.

Cause and effect can sometimes be predicted by observing abnormal behavior even when the behavior is within specifications. Operators log equipment data and inform shift management when specifications are exceeded or when unusual equipment…

Parallel-path design activities require an increased level of management oversight and control to mitigate the risks inherent in this process.
Schedule pressure cannot be allowed to compromise the integrity of the design process.

This incident highlights the need to ensure that the performance of special procedures does not place facility equipment in a condition that could lead to entry into a LCO.

This incident occurred due to moisture in the sample line monitoring system. Removing moisture from the sample line increases the reliability of the equipment. Further evaluations are being considered for improving system reliability.

All safety devices worked as designed thereby protecting the environment and laboratory personnel. Researchers involved in the experiment acted properly and with the parameters set forth in operational procedures.

Follow up: Stops have…

Key:

  • = No Ignition
  • = Explosion
  • = Fire
Hydrogen Incident Summaries by Equipment and Primary Cause/Issue
Equipment / Cause Equipment Design or Selection Component Failure Operational Error Installation or Maintenance Inadequate Gas or Flame Detection Emergency Shutdown Response Other or Unknown
Hydrogen Gas Metal Cylinder or Regulator   3/31/2012
4/30/1995
2/6/2013
4/26/2010 12/31/1969     3/17/1999
11/1/2001
12/23/2003
Piping/Valves 4/4/2002
2/2/2008
5/11/1999
4/20/1987
11/4/1997
12/31/1969
8/19/1986
7/27/1991
12/19/2004
2/6/2008
10/3/2008
4/5/2006
5/1/2007
9/19/2007
10/31/1980
2/7/2009 1/24/1999
2/24/2006
6/8/1998
12/31/1969
2/7/2009

9/1/1992
10/31/1980

10/3/2008  
Tubing/Fittings/Hose   9/23/1999
8/2/2004
8/6/2008
9/19/2007
1/1/1982 9/30/2004
10/7/2005
  10/7/2005  
Compressor   10/5/2009
6/10/2007
8/21/2008
1/15/2019
    10/5/2009 8/21/2008  
Liquid Hydrogen Tank or Delivery Truck 4/27/1989 12/19/2004
1/19/2009
8/6/2004 12/31/1969   1/1/1974 12/17/2004
Pressure Relief Device 7/25/2013
5/4/2012
1/15/2002
1/08/2007
12/31/1969        
Instrument 1/15/2019 3/17/1999
12/31/1969
2/6/2013
    11/13/73    
Hydrogen Generation Equipment 7/27/1999     10/23/2001      
Vehicle or Lift Truck   7/21/2011         2/8/2011
12/9/2010
Fuel Dispenser   8/2/2004
5/1/2007
6/11/2007
9/19/2007
  2/24/2006
1/22/2009
     
Fuel Cell Stack            

5/3/2004
12/9/2010
2/8/2011

Hydrogen Cooled Generator       12/31/1969
2/7/2009
     
Other (floor drain, lab
anaerobic chamber,
heated glassware,
test chamber,
gaseous hydrogen
composite cylinder,
delivery truck)
  11/14/1994
7/21/2011
7/27/1999
6/28/2010
8/21/2008
12/31/1969
3/22/2018
    6/10/2019
  • = No Ignition
  • = Explosion
  • = Fire