A single-stage regulator "failed" while flowing hydrogen gas from a standard 200 cu.ft. gas bottle. The regulator had functioned properly prior to the event through several on-off cycles. During the event, a solenoid valve was opened to allow hydrogen to flow, when a rather loud noise was noted and gas began flowing out of the pressure relief valve on the side of the regulator. It was noted that the low-pressure gauge on the regulator was "pegged" at the high side (>200 psi). The valve on the bottle was shut off, and hydrogen flow was immediately stopped. Hydrogen flowing out of the relief valve did not ignite. With the bottle shut off, the regulator was removed and replaced with another regulator of the same type, and activities continued.

The failed view more

A significant hydrogen leak occurred during refueling of the onboard hydrogen storage tank of a fuel cell-powered lift truck while it was completely depowered. The in-tank shutoff solenoid valve had recently been replaced, and this was the initial refueling event after the replacement. The fuel zone access panel was removed to allow constant visual leak checking with Snoop leak-detection fluid. The event occurred during the final pressure testing of the repaired system when an O-ring failed at approximately 4500 psi, releasing the entire contents of the hydrogen tank in about 10 minutes. The dispenser hose/nozzle was immediately disconnected, and the leak location was quickly isolated to the tank/valve interface. A 30-foot boundary around the lift truck was cleared of personnel and view more

Overview: A hydrogen leak and explosion occurred due to the installation of an incorrectly sized gasket at the suction line of a hydrogen compressor in a refinery hydrodesulfurization plant. The incorrectly sized gasket was mounted during the startup of the plant in 2001 and had never being inspected nor replaced.

Incident synopsis: The operating conditions were stable when the operator received an alarm indicating pressure loss in the circuit. He immediately instructed his field personnel to inspect the area. The hydrogen leak was confined inside the compressor room because the walls and roof were not provided with ventilation devices. An explosion occurred, causing two fatalities and the destruction of the compressor room and some of the surrounding area.

A hydrogen explosion and fire occurred in the benzene unit of a styrene plant in a large petrochemical complex. The unit was being restarted following a scheduled maintenance shutdown. The explosion followed the release of about 30 kilograms of 700-psig hydrogen gas from a burst flange into a compressor shed. Two men were killed and two others were injured. If it had not been a holiday, the death toll and injuries would probably have been much worse.

The operators were bringing the plant online and increasing the hydrogen circulation pressure. About 10-15 seconds before the explosion, they heard a pop and then a loud hiss of pressure being released within the compressor shed. Witnesses reported seeing a white flash and then a large fireball. The fires burned out in 2-3 minutes, view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more

Overview
During operation of a succinic acid plant, hydrogen leaked from a mounting joint on a safety valve at the upper part of a reactor, which generated a hydrogen flame. Prior to the incident, the safety valve was removed and reattached during an inspection at a turnaround shutdown. An incorrectly sized, smaller gasket was installed on the joint, and the tightening force on the bolts was inadequate. Therefore, a gap was generated as time went by and un-reacted hydrogen leaked.

Background
In the case of many leak tests after construction, a leak is checked by a soap test after pressurizing piping and facilities for the test. (A soap test is conducted by pouring soap suds at the place to be checked (mainly a joint part) after pressurizing. If bubbles are found, view more

Overview
A hydrogen leak and fire occurred due to the installation of an incorrectly sized gasket at a solvent manufacturing plant. A worn gasket was accidentally replaced with a new gasket that was smaller than the standard one, and the system could not withstand the operational pressure of the hydrogen, causing the hydrogen to leak and ignite a small fire. Furthermore, a nearby gasket was damaged by the fire, causing a larger quantity of hydrogen to leak, and the fire spread. As nitrogen was substituted for the combustible hydrogen gas in the piping at an early stage of the fire, damage was limited to the immediate area. If the hydrogen had not been quickly purged from the system, the fire damage would have been greater. It is assumed that gasket management at a turnaround view more