On July 1, 2009, a plasma experiment was conducted to produce a small quantity of sodium borohydride from anhydrous sodium borate, methane, and hydrogen in an enclosed reaction chamber. The reactants were injected into an argon plasma flame to carry out the synthesis reaction.

After the run was completed, as per work control procedure, the experimenter removed the plasma torch from the top lid of the collection chamber and taped a piece of weighing paper over the opening so air would not get into the chamber and contaminate the product. The experimenter then installed a plastic glove bag over the top lid of the collection chamber and attached it just below the top lid using Velcro. Before final installation, the experimenter placed a screwdriver and a natural bristle paint brush view more

A hose clamp failed on a low-pressure vent line from a hydrogen reactor experiment and effluent was leaked into the laboratory. Unburnt hydrogen in the effluent stream triggered the low-level hydrogen alarm. The hose clamp was resecured and other hose clamps were checked for proper tightness.

The over-pressurization of a laboratory ball mill reactor designed for operation under slightly elevated pressures resulted in a serious injury. The apparatus had been routinely operated under argon and hydrogen pressures of 5-10 atmospheres for nearly two years. The apparatus had not been tested for operation at pressures greater than 10 atm.

A visiting intern, frustrated in attempts to hydrogenate magnesium silicide through ball milling in the previously noted pressure range, attempted to perform the operation at higher pressures. The approximately 70-ml reactor was loaded in a glove box with 0.5 g of magnesium silicide and six milling balls. Upon pressurization to 80 atmospheres, a 270-degree rupture occurred around the perimeter of the reactor. The blow-out of the reactor view more