Operators in a powdered metals production facility heard a hissing noise near one of the plant furnaces and determined that it was a gas leak in the trench below the furnaces. The trench carried hydrogen, nitrogen, and cooling water runoff pipes as well as a vent pipe for the furnaces.

Maintenance personnel presumed that the leak was nonflammable nitrogen because there had recently been a nitrogen piping leak elsewhere in the plant. Using the plant's overhead crane, they removed some of the heavy trench covers. They determined that the leak was in an area that the crane could not reach, so they brought in a forklift with a chain to remove the trench covers in that area.

Eyewitnesses stated that as the first trench cover was wrenched from its position by the forklift view more

The incident occurred in the catalytic hydrotreatment plant of an oil refinery. The plant, which began operations in September 1997, has a capacity of 1650 tons/day of light fuel oil and 1450 tons/day of heavy fuel oil. The plant was designed to desulfurize the light and heavy fuel oil fractions produced in the refinery by treating them with high-pressure hydrogen over a catalyst to remove sulfur (producing hydrogen sulfide as a byproduct). The plant has two heating/reaction/fractionating sections to treat the two fuel oil fractions, but a single gas purification and compression section for the recycled hydrogen gas.

The heavy fuel oil reactor feedstock from the vacuum distillation plant is sent to the heavy fuel oil treatment section through three pipelines equipped with flow view more

A hydrogen reformer furnace at a refinery was shutdown for maintenance to remove and cap the inlet and outlet headers of some radiant tubes that had previously developed hot spots and been isolated by externally pinching them off at the inlet. A decision was made to leave steam in the steam-generating circuit during this maintenance operation to prevent freezing. After maintenance was complete, the startup procedure required the furnace to be first heated up to 350°C (662°F) prior to introducing 4136 kPa (600 psig) steam into the radiant tubes. Just after the 4136 kPa (600 psig) startup steam was introduced into the reformer furnace inlet, the control room alarm journal reported an extreme positive pressure spike at the same time a single loud bang was reported by the operations view more

Summary
A faulty modification to a multiple-gas piping manifold allowed mixing of hydrogen and oxygen that resulted in a storage tube explosion. Several employees suffered severe burn injuries from the incident.

Incident Synopsis
An employee, without authorization, fabricated and installed an adapter to connect a hydrogen tube trailer manifold to an oxygen tube trailer manifold at a facility for filling compressed-gas cylinders for a variety of gases, including hydrogen, oxygen, nitrogen, and helium. A subsequent improper purging procedure allowed oxygen gas to flow into a partially filled hydrogen tube on a hydrogen tube trailer. An ignition occurred in the manifold piping system and a combustion front traveled into the hydrogen tube where, after traveling about a view more

An offgas system mishap involved two explosions occurring within an interval of about 3 ½ hours. The first offgas explosion was reportedly caused by a welding operation on an air line adjacent to a hydrogen sensor line containing off gas. The welding arc initiated a detonation within the offgas piping. The detonation was contained by the piping system but blew out the water seal at the base of the vent stack.The second hydrogen explosion in this incident occurred in the stack base area. Hydrogen accumulated in the enclosed base area after the water seal had been blown in the first explosion. The stack base metal door was blown off its hinges from the second explosion, and the reinforced concrete stack was also damaged. A plant employee walking by the stack at the time of the explosion view more