What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

An unplanned shutdown of the hydrogen supply system occurred, affecting the hydrogen furnaces in the plant. The apparent cause was an inadvertent valve closing, which was contrary to the written procedure.

A preventative maintenance activity was being conducted on the hydrogen gas system. Shortly after starting that work, various hydrogen gas users notified the emergency response personnel that the hydrogen supply safety alarms sounded, indicating an interruption of the hydrogen gas supply. As a result, the hydrogen furnaces shut down. This shut down is an automated process which injects an inert gas (nitrogen or argon) to prevent the introduction of oxygen and its mixing with any hydrogen gas. All shut downs functioned as designed. As a precautionary measure, fire protection view more

Installation of a 9000-gallon liquid hydrogen storage tank by a lessee at a building has not been evaluated for effect on the Safety Authorization Basis (SAB) of nearby facilities.

During review of an Emergency Management Hazard Assessment document, a reviewer questioned whether the SAB of nearby facilities had been reviewed for the effect of the installed 9000-gallon liquid hydrogen tank. Reviews by the facility management and facility safety personnel confirmed the evaluations have not been performed.

The direct cause was determined to be a management problem, with policy not adequately defined, disseminated, or enforced to integrate potential lessee hazards into the facility safety program documentation on the 9000-gallon hydrogen tank and delivery. The existing policy view more

The hydrogen fueling dispenser nozzle could not be completely disconnected from the vehicle after refueling. It was finally disconnected after trying several times. The cover of the nozzle interfered with the disconnection operation. No malfunction of the nozzle was found. It can be easily disconnected when it is withdrawn along its axis. Sometimes misalignment occurred due to the weight of the dispenser hose.

A student cleaned catalyst that was being used for a fuel cell membrane electrode assembly from a spatula. He then placed the contaminated paper towel into a waste container that contained other waste that was wet with alcohol. The alcohol reacted with the catalyst, igniting a fire within the waste container. The fire was extinguished with a beaker of water.

During a refueling event, the operator activated the fueling lever in the wrong sequence. The vehicle filled to proper pressure, but filled faster than normal. Under different circumstances, this could have resulted in overheating of the receiving fuel tank.

A significant hydrogen leak occurred during refueling of the onboard hydrogen storage tank of a fuel cell-powered lift truck while it was completely depowered. The in-tank shutoff solenoid valve had recently been replaced, and this was the initial refueling event after the replacement. The fuel zone access panel was removed to allow constant visual leak checking with Snoop leak-detection fluid. The event occurred during the final pressure testing of the repaired system when an O-ring failed at approximately 4500 psi, releasing the entire contents of the hydrogen tank in about 10 minutes. The dispenser hose/nozzle was immediately disconnected, and the leak location was quickly isolated to the tank/valve interface. A 30-foot boundary around the lift truck was cleared of personnel and view more