An experienced researcher with 30+ years of laboratory experience (including working with air-sensitive compounds) was disposing of a small vial of catalyst and hydride powder left in the laboratory by a post-doc. The researcher emptied the vial into a container of mineral oil inside a glove box, but a small amount of the hydride powder adhered to the wall of the vial. The vial was then removed from the glove box and brought over to a tall waste jar in the laboratory that contained isopropanol. (Isopropanol is the first (slowest-acting) pacifier used when deactivating pyrophoric hydrides.) The vial was opened and inverted over the isopropanol jar and the residue powder was tapped into the jar. There was a "small flash of flame" that quickly extinguished itself.

A small research sample of approximately 5 grams of aluminum hydride (alane) doped with 2-3 mol % TiCl3 contained within a glass ampoule ruptured after transit while stored in an office cabinet. The rupture was attributed to over-pressurization caused by hydrogen gas buildup within the sample over a four-month period. The glass ampoule, contained within a 0.2-inch thick cardboard shipping tube, was not a pressure-rated container. The rupture resulted in glass chards penetrating the protective cardboard shipping tube. The aluminum hydride, a fine powder, was released from the shipping tube during the pressure release. The fine aluminum powder leaked from the cabinet and set off a local smoke alarm that brought emergency responders to the scene. No personnel were present in the area when view more

A small hydrogen fire occurred in a chemical process hood. A chemist was performing an experiment reacting manganese dioxide with hydrogen to produce manganese oxide and water. The chemist had left the process, which would take approximately one hour to complete, and was working in a nearby lab. While the chemist was gone, a second worker heard a pop, saw the hydrogen fire in the hood, and requested the activation of a fire alarm. A third employee in the area activated a manual fire alarm. The chemist, upon hearing the fire alarm, returned to the room, shut off the hydrogen fuel supply, and evacuated the facility. The hydrogen fire lasted for approximately one minute. The remaining small fire was extinguished about 10 minutes later with a HALON portable fire extinguisher by a view more

During preparation of a new hydrogen storage material, ammonia borane (AB) loaded onto mesoporous carbon, an unexpected incident was observed. As with all procedures with new materials the work is conducted on a small scale and in a laboratory fume hood. They followed the procedures that they had used for absorption of ammonia borane onto mesoporous silica without incident.

To absorb the solid AB into a scaffold material they dissolve AB in a dry aprotic polar solvent, THF. The saturated solution of AB in THF is added to the mesoporous carbon material in a round bottom flask, stirred for 10 minutes to saturate the mesoporous scaffold with AB and then the solvent is slowly removed under vacuum. At this point the sample is assumed to be prepared and ready for transfer to a sample view more

A sulfur deprivation test was conducted in a sealed 250 ml vessel. More hydrogen was generated in this process than was anticipated, and the vessel cracked.