A partial pressure sensor for an automated gas environment system (AGES) was not functioning correctly for pure hydrogen flow. While personnel were troubleshooting the problem, a burst disk ruptured resulting in a leak of hydrogen gas and actuation of a flammable gas alarm.

System troubleshooting involved the installation of a small hydrogen gas cylinder and temporary manual valve in an engineered ventilated enclosure adjacent to an instrument sample well. A burst disk associated with the temporary manual valve ruptured upon opening of the gas cylinder valve. The vented gas, exhausting through an engineered exhaust system, triggered the flammable gas detector. Personnel promptly evacuated the area in accordance with established procedures. Appropriate personnel responded to the view more

A single-stage regulator "failed" while flowing hydrogen gas from a standard 200 cu.ft. gas bottle. The regulator had functioned properly prior to the event through several on-off cycles. During the event, a solenoid valve was opened to allow hydrogen to flow, when a rather loud noise was noted and gas began flowing out of the pressure relief valve on the side of the regulator. It was noted that the low-pressure gauge on the regulator was "pegged" at the high side (>200 psi). The valve on the bottle was shut off, and hydrogen flow was immediately stopped. Hydrogen flowing out of the relief valve did not ignite. With the bottle shut off, the regulator was removed and replaced with another regulator of the same type, and activities continued.

The failed view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more

A valve packing started to leak during cold ambient temperatures. A technician was dispatched. He first reduced the pressure to minimize the release and then re-tightened the packing to stop the leak.

A safety research laboratory experienced two similar air-actuated ball valve failures in a 6-month period while performing hydrogen release experiments. The hydrogen release system contains a number of air-actuated ball valves which are sequenced by a Programmable Logic Controller (PLC) in order to obtain the desired release parameters. During an experimental release sequence, a PLC valve command failed to open the valve even though the PLC valve position confirm signal indicated the valve had opened. On further investigation, the valve actuator and valve stem were found to be moving correctly, but the valve was not opening. The system was depressurized and purged with nitrogen, and the valve was removed for inspection. Inspection required dismantling the valve, and in both incidents a view more

The hydrogen sensor at a hydrogen fueling station detected a slight leakage from the ground packing of the flow control valve during refueling. The refueling operation was stopped immediately. The leak was stopped by tightening the ground packing sealing screw, but it started leaking again in about a week.

The flow control valve was disassembled and inspected. Dust was found at the ground seal and the packing was distorted. Leakage was believed to be due to the dust invasion and repeated tightening of the sealing screw. The packing had been used for four years and two months without replacement.

A hydrogen leak occurred from a 1-inch gate valve on a makeup gas line in an oil refinery gas oil hydrotreater unit. When the leak was discovered, the gas oil hydrotreater unit shutdown procedures were immediately implemented and emergency response was requested. The refinery response team along with county response teams responded, and after approximately 1/2 hour, the gas oil hydrotreater unit was fully shut down. Shutdown consisted of sufficiently depressurizing the unit and adding nitrogen to allow safe closing of the leaking 1-inch gate valve and installation of the associated missing bull plug.

During this event, the 1-inch gate valve was found to be open roughly 10% with no bull plug in the valve, allowing the hydrogen to leak to the atmosphere. In addition, a 1-inch bull view more

Hydrogen leaked from a 9,000-gallon horizontal liquid hydrogen tank in the rear of a high-intensity lamp manufacturing facility. The facility manager noticed the leak during his normal morning rounds and initiated the plant's emergency response policy, which included calling the local fire department. A large vapor plume (actually condensed moisture in the air) was visible 200 feet above the tank. The technician for the hydrogen supplier arrived on site, thawed out the ice buildup around the gland nut from which the leak originated using warm water, and tightened the nut, thus ending the problem. The technician verified that the leak originated from packing material around the valve that had come loose because of the recent extreme cold weather.

The fire department view more

The subject needle valve was used primarily for manual filling to control the flow rate of hydrogen from storage banks to the 70MPa test system. The valve was installed on the exterior of the thermal chamber in ambient temperatures of -5C to +30C. The gas flowing through the valve was at conditioned temperatures of -40C to +50C. The valve was in service for approximately two years and 400 fill operations.

Failure occurred during a test under an open valve condition. When attempting to close the valve, the turning force increased and the technician was unable to completely close the valve. An upstream ball valve was closed to isolate the flow.

During operation of a succinic acid plant, hydrogen leaked from a mounting joint on a safety valve at the upper part of a reactor, which generated a hydrogen flame. Prior to the incident, the safety valve was removed and reattached during an inspection at a turnaround shutdown. An incorrectly sized, smaller gasket was installed on the joint, and the tightening force on the bolts was inadequate. Therefore, a gap was generated as time went by and un-reacted hydrogen leaked.

In the case of many leak tests after construction, a leak is checked by a soap test after pressurizing piping and facilities for the test. (A soap test is conducted by pouring soap suds at the place to be checked (mainly a joint part) after pressurizing. If bubbles are found, view more