A single-stage regulator "failed" while flowing hydrogen gas from a standard 200 cu.ft. gas bottle. The regulator had functioned properly prior to the event through several on-off cycles. During the event, a solenoid valve was opened to allow hydrogen to flow, when a rather loud noise was noted and gas began flowing out of the pressure relief valve on the side of the regulator. It was noted that the low-pressure gauge on the regulator was "pegged" at the high side (>200 psi). The valve on the bottle was shut off, and hydrogen flow was immediately stopped. Hydrogen flowing out of the relief valve did not ignite. With the bottle shut off, the regulator was removed and replaced with another regulator of the same type, and activities continued.

The failed view more

Hydrogen alarms went off in a research laboratory and the fire department was called, but no hydrogen leak was detected. The hydrogen system was leak-checked with helium and found to be leak-free except for a very small leak in the manifold area. The manifold leak was fixed, but because of its small size, it was not thought to be the likely source for the hydrogen alarm trigger. While hydrogen was removed from the system for leak-testing, the hydrogen alarm went off again, and again the fire department responded. There was no hydrogen present in the system to trigger this alarm. Other sources within the building were checked to see what may have set off the alarm, but none were found. One research area uses small amounts of hydrogen, but laboratory logs indicate that none was being view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more

An instrument engineer at a hydrogen production facility was arresting the hydrogen leakage in tapping a pressure transmitter containing 131-bar hydrogen gas. The isolation valve was closed and the fittings near the pressure transmitter were loosened. The pressure dropped from 131 bar to 51 bar. The fitting was further loosened (though very little); the instrument tube slipped out of the ferrule and got pulled out of the fitting. With the sudden release of the 51-bar hydrogen, there was a loud pop (like a fire cracker) and the spark-proof tool was observed to have black spot on it. The volume of the hydrogen gas released was small, since it was in the tapping line only.

Two fitting failures were experienced for fueling equipment filling systems. Both fittings were installed in the system thermal chamber experiencing ambient temperatures of -40C to +50C. They were connected in high-pressure lines used for 70MPa hydrogen fueling.

The first fitting, a 0.25-inch NPT hose connection, was in service for approximately one year with no signs of leakage. The failure was noticed when the system was pressurized during a filling sequence. The failure was discovered by an audible hissing noise during leak checking. The system was depressurized and the fitting removed and replaced. The system was re-pressurized with no further leakage.

When attempting to reconnect a second fitting, a double-ferrule high-pressure connection, the fitting in question view more

A power plant reported a hydrogen leak inside an auxiliary building. The given plant was in cold shutdown at the time of the event. The discovery of this problem was as a result of an unassociated event involving the activation of a chlorine monitor in the control building. When additional samples indicated no chlorine gas, the shift supervisor ordered further investigation into other plant areas. Because there was no installed detection equipment, portable survey instruments were used to determine gaseous mixtures. Hydrogen was detected in the auxiliary building at 20 to 30 percent of the lower flammability limit (LFL) for hydrogen. A level of about 30 percent of LFL corresponds to about 1.2 percent hydrogen by volume.

When hydrogen was discovered in the auxiliary building, the view more

While research staff were working in a lab, a staff member opened the primary valve to a 0.2" (1500 psi) hydrogen gas line connected to a manifold supplying instruments in the lab. Upon opening the valve, the hydrogen gas line failed at a fitting on the switching manifold, releasing a small amount of hydrogen gas. The staff member closed the valve immediately, then inspected the gas line and found the front ferrule (of the compression-style fitting) to be missing. There were no injuries or damage to equipment.

In the follow-on discussion with research staff, it was learned that approximately one month earlier, a similar condition (front ferrule missing from a fitting) was found while performing a modification to a similar manifold. Following a critique, management expressed view more

A demolition technician noted an elevated combustible gas lower explosive limit (LEL) on a pipe that was being tested prior to cutting (No. 2 pipe). The No. 2 pipe was one of four pipes being tested. The other three pipes tested less than detectable for combustible hydrogen gas. Testing involves tapping the pipe and connecting the pipe to an Explosive Gas Detector via a tube. When an elevated LEL is identified, the pipe is allowed to vent and then retested prior to cutting. After tapping the No. 2 pipe, the work crew left the pipe open to vent and departed the area for the end of shift.

At approximately 7"45 PM on the same day, a crew was on overtime to support roofing activities. Since additional workers were available, the craft supervisor decided to re-enter the viewing view more

During inspection of a hydrogen make-up compressor, it was discovered that a 1/4” stainless steel screw and nut that mounted a temperature gauge to a stainless steel pipe was resting against the side of a schedule 160 high-pressure hydrogen pipe. Constant vibration of the process equipment had caused the bolt to rub a hole in the high-pressure suction piping, resulting in the release of make-up hydrogen. The pipe was out of sight, and the problem was identified by an employee who heard the whistling sound of escaping hydrogen. The compressor was taken offline and depressurized.

An operator began preparations for a cleaning run, and was unaware that a maintenance task to calibrate a pressure transducer was scheduled to also take place that morning. The calibration required a break on a hydrogen line in order to install a Measuring and Test Equipment (M&TE) gage, which was used in the calibration. At the time the operator was informed of the calibration, the cleaning run procedure had been initiated but the actual cleaning had not yet begun. A discussion between his supervisor and the facility maintenance coordinator resulted in a decision to proceed with the maintenance task and suspend the cleaning run until afterwards.

The operator evacuated the hydrogen line and the hydrogen cylinder was valved out. The maintenance work package procedure had view more