What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

Summary

A hydrogen generation plant experienced a fire and significant damage due to a concussive combustion event that started in a high-pressure hydrogen feed pipe.

System Description

A certain hydrogen plant is designed to continuously produce hydrogen at a purity of 99.75% and at a rate of 510 m3 per day. Hydrogen is produced in two banks of cells filled with a strong solution of caustic soda. Current is passed through the cells to produce hydrogen and oxygen. The oxygen is vented directly to the atmosphere, while the hydrogen is piped to the gasholder. The gasholder is a low-pressure storage vessel capable of storing 28 m3 of gas. It is constructed in two parts. The bottom section is a large round tank. The upper section is an inverted tank or bell that is view more

Description of Circumstances
An incident occurred in late 2001, while a boiling water reactor (BWR) unit was operating at rated power. The utility was performing a periodic surveillance of the high-pressure coolant-injection (HPCI) system. Immediately after the test began, the HPCI system automatically isolated and the reactor building fire detectors actuated. The unit was then manually shut down. An examination of the residual heat removal (RHR) system revealed that a pipe elbow had ruptured near the high point in the RHR branch steam supply line leading to one of the two RHR heat exchangers (steam condensing mode line) in the reactor building. Fragments from the piping rupture caused some damage to equipment in the general area, but no significant damage to any safety-related view more

A facility experienced a major fire in its Resid Hydrotreater Unit (RHU) that caused millions of dollars in property damage. One employee sustained a minor injury during the emergency unit shutdown and there were no fatalities.

The RHU incident investigation determined that an 8-inch diameter carbon steel elbow inadvertently installed in a high-pressure, high-temperature hydrogen line ruptured after operating for only 3 months. The escaping hydrogen gas from the ruptured elbow quickly ignited.

This incident occurred after a maintenance contractor accidentally replaced an alloy steel elbow with a carbon steel elbow during a scheduled heat exchanger overhaul. The alloy steel elbow was resistant to high-temperature hydrogen attack (HTHA), but the carbon steel elbow was not. view more

An offgas system mishap involved two explosions occurring within an interval of about 3 ½ hours. The first offgas explosion was reportedly caused by a welding operation on an air line adjacent to a hydrogen sensor line containing off gas. The welding arc initiated a detonation within the offgas piping. The detonation was contained by the piping system but blew out the water seal at the base of the vent stack.The second hydrogen explosion in this incident occurred in the stack base area. Hydrogen accumulated in the enclosed base area after the water seal had been blown in the first explosion. The stack base metal door was blown off its hinges from the second explosion, and the reinforced concrete stack was also damaged. A plant employee walking by the stack at the time of the explosion view more

A large, hydrogen-cooled generator is driven by steam turbines at a power station. During maintenance shutdowns, the hydrogen cooling loop in the generator is purged with carbon dioxide. After CO2 concentrations are measured with a densitometer to verify the complete removal of hydrogen, the generator is purged with air and the maintenance is performed.

This purging procedure was used prior to the explosion. The CO2 reading was reported to be 100 percent CO2 at the top of the generator. The cooling system was then purged with air and a 1/2 inch pipe in the cooling loop was cut to install some new instrumentation. When the pipe was cut, pressurized gas was emitted at the opening. Workers assumed the gas was either carbon dioxide or air and proceeded with the new instrument view more

A rupture occurred in a 24-inch gas line in a reformer. The pipe contained hydrogen and carbon monoxide at a pressure of about 400 psi and a temperature of 930 °C. The ruptured section of pipe had a high-temperature alloy steel outer wall, a refractory liner, and a stainless steel inner liner. The refractory lining had been repaired several times before (including three months prior to the incident) because of localized deterioration and hot spots. The repair procedure consisted of cutting a section of pipe, re-pouring the refractory liner, and patch-welding the outer wall.

The first rupture occurred when the 42-inch-long welded section of the pipe suddenly blew out. On-site employees heard a rumble and observed a flame above the ruptured pipe. Before the torch fire at the view more

Overview: A pipe end containing fuel oil corroded at the outlet of a heat exchanger on the outlet side of a desulfurization reactor. The corroded pipe end leaked hydrogen gas, which exploded, causing oil to leak from the heat exchanger. The leaking oil developed into an oil fire, and the damage spread. The causes of the pipe end corrosion include the following:

There was a high concentration of corrosive substances in the process injection water.
The concentration of corrosive substances increased due to re-molding the heat exchangers.
The shape of the pipe cap was dead end piping.

Incident: During normal operations at a fuel oil refinery, a pipe end in a desulfurization unit developed a hydrogen leak, which led to an explosion. The pipe end was located on view more

Overview

Hydrogen leaked from the outlet piping of a hydrogen heating furnace at a fuel oil desulfurization cracking unit during normal refinery operation. The leaking hydrogen caused a localized fire. Dilution water for cleaning polythionic acid collected in the drain nozzle after a turnaround shutdown. The chlorine concentration in this dilution water was high because its concentration in the industrial water was originally high. The chlorine in the industrial water was concentrated by the high temperature, after the plant was restarted, and stress corrosion cracking occurred. Hydrogen leaked and was ignited by static electricity or heat.

Incident 

A fire occurred at the fuel oil desulfurization cracking unit of a refinery 257 hours after startup of the plant, view more

Incident Synopsis
A technician was welding a cable suspended over a stainless steel H2 instrument line. During the welding process, two holes were accidentally burned through the hydrogen tubing. The operator heard a hissing sound and closed the valve, but the hydrogen had already ignited and it burned his hand while he was feeling for a leak.

Cause
A short during welding caused the pinholes in the tubing containing the gaseous H2.

A bourdon tube ruptured in a pressure gage after 528 hours of operation in a liquid H2 system. The alarm sounded, the system was isolated and then vented.