What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

A facility experienced a major fire in its Resid Hydrotreater Unit (RHU) that caused millions of dollars in property damage. One employee sustained a minor injury during the emergency unit shutdown and there were no fatalities.

The RHU incident investigation determined that an 8-inch diameter carbon steel elbow inadvertently installed in a high-pressure, high-temperature hydrogen line ruptured after operating for only 3 months. The escaping hydrogen gas from the ruptured elbow quickly ignited.

This incident occurred after a maintenance contractor accidentally replaced an alloy steel elbow with a carbon steel elbow during a scheduled heat exchanger overhaul. The alloy steel elbow was resistant to high-temperature hydrogen attack (HTHA), but the carbon steel elbow was not. view more

A person working in a hydrogen lab unknowingly closed the wrong hydrogen valve and proceeded to loosen a fitting in one of the hydrogen gas lines. The pressure in the 1/4"-diameter hydrogen line was approximately 110 psig. Hydrogen escaped from the loosened fitting and the pressure release resulted in the tubing completely detaching and falling to the floor. The person noted seeing a white stream around the hydrogen jet leak. The person noted a color change and noise change as the leak ignited (this happened in a matter seconds and he did not have a chance to react). The person left the lab and pushed the emergency stop button. Someone else pulled the fire alarm. Both of these actions were designed to close the main hydrogen solenoid (shutoff) valve. The local emergency response view more

The interior of a small high-temperature furnace, approximately 24 inches high by 18 inches wide, became contaminated with an unknown material later identified as magnesium. The furnace was disassembled to clean the unknown material from the interior surfaces, and while attempting to clean the bottom of the furnace, the technician tapped the upper lip of the furnace with a spatula and the magnesium flashed. The technician was stepping back from the furnace when the magnesium flashed. He received minor eye irritation and his eyebrows were singed.

Later that week the same technician was attempting to clean the interior surfaces of the top of the furnace and sprayed, as directed, the interior of the top with a water-based cleaning liquid which consisted of 91% water. He stepped view more

DESCRIPTION: On a Friday afternoon in 2007 a traffic accident occurred at the corner of two urban streets. Two vehicles were involved. Each vehicle contained a single driver (no passengers). Vehicle 1 was a Fuel Cell Vehicle. Vehicle 2 was a conventional Toyota Camry. Vehicle 1 was traveling west, approaching an intersection with a green light, and proceeded into the intersection. Vehicle 2 was traveling north on a cross street. The driver of Vehicle 2 incorrectly perceived a green light and proceeded into the intersection. The vehicles collided in the intersection.

RESPONSE: The police were coincidentally in the area and able to respond quickly to the site. The vehicles were moved out of the intersection. Vehicle 1 (fuel cell vehicle) shut down upon impact and was pushed out of view more

A rupture disc blew on a 20,000-gallon liquid hydrogen tank, causing the vent stack to exhaust cold gaseous hydrogen. Emergency responders were called to the scene. To stabilize the tank, the remaining hydrogen was removed from the tank except for a small volume in the heel of the tank that could not be removed manually. The tank vacuum was lost. Firemen sprayed the tank with water and directed a stream onto the fire exiting the vent stack. The water was channeled directly into the open vent stack, and the exiting residual hydrogen gas (between -423 F and -402 F) caused the water in the vent stack to freeze. The water freezing caused the vent stack to be sealed off, disabling the only exit for the cold hydrogen gas. After a time, the residual hydrogen gas in the tank warmed up, causing view more

A refinery hydrocracker effluent pipe section ruptured and released a mixture of gases, including hydrogen, which instantly ignited on contact with the air, causing an explosion and a fire. Excessive high temperature, likely in excess of 1400°F (760°C), initiated in one of the reactor beds spread to adjacent beds and raised the temperature and pressure of the effluent piping to the point where it failed. An operator who was checking a field temperature panel at the base of the reactor and trying to diagnose the high-temperature problem was killed. A total of 46 other plant personnel were injured and 13 of these were taken to local hospitals, treated, and released. There were no reported injuries to the public.

Property damage included an 18-inch (46-centimeter) long tear in the view more

A hydrogen explosion occurred in a university biochemistry laboratory. Four persons were taken to the hospital for injuries. Three of these were treated and released shortly thereafter; the fourth was kept overnight and released the following evening. All of the exterior windows in the laboratory were blown out and there was significant damage within the laboratory. One sprinkler was activated that controlled a fire associated with a compressed hydrogen gas cylinder.

First responders from the local community and the university campus were quickly on the scene. Once the injured were attended to and the site secured, response efforts focused first on assessing potential hazards (electrical, fire, hazardous materials, etc). Campus personnel worked into the night to board up windows view more

A plume of hydrogen gas escaped from the offloading valve of a liquid hydrogen delivery truck while transporting hydrogen to a commercial facility. The plume ignited, resulting in a flash and concussion loud enough to be heard inside the nearby building and to set off the building’s seismic event detectors. A small amount of hydrogen gas continued to escape from the trailer tank and burn until a company specialist arrived to manually shut off a critical valve almost eight hours later. In the mean time, emergency response crews called to the scene sprayed water across the hydrogen tank as a precautionary cooling measure. The actual cause of this incident appears to have been primarily driver error. A number of steps required as part of the standard safety procedure were either view more