Incident Synopsis
While attempting to replace a rupture disk in a liquid H2 vessel, H2 gas was released and ignited. In fighting the fire, liquid N2 was sprayed onto a second liquid H2 vessel located nearby. This resulted in cracking of the outer mild steel vacuum jacket. The loss of the vacuum caused a rapid increase in pressure and rupture of the burst disk of the second vessel. H2 boiled off and was burned in the fire.

Cause
The rupture disk was being replaced with a load of liquid H2 in the vessel and no separating inerting gas. The H2-air mixture was probably ignited by static discharges. Rupture of the second vessel burst disk was caused by the low-temperature exposure of the mild steel vacuum jacket.

Incident Synopsis

A hydrogen explosion occurred in an emergency battery container used to transfer fuel elements. The container had five emergency power batteries. Damage was incurred by the explosion.

Cause

The H2 concentration in the container increased because the battery charger had been left on charge. In addition, the container was placed in an un-ventilated airlock. Ignition of the H2-air mixture was believed to be caused by the relays and micro switches activated when the airlock door was opened.

A process area alarm activated. The alarm was caused by an instrument channel located above a reaction vessel off-gas system final HEPA filter canister, which indicated 25% of the lower explosive limit (LEL) for hydrogen. Since the only source of hydrogen is from the reaction vessel during the reaction of sodium with concentrated sodium hydroxide, the immediate actions were to shutdown the reaction process and place the facility in a safe condition.

The root cause was inadequate or defective design. Had the pre-filter drains been vented to outside the building, no hydrogen could accumulate in the process area. The corrective action for this is to complete an Engineering Task Authorization (ETA) to install a sample/drain collection system with loop seals to prevent any release of view more