What is Lessons Learned?

What is H2LL?

This database is supported by the U.S. Department of Energy. The safety event records have been contributed by a variety of global sources, including industrial, government and academic facilities.

H2LL is a database-driven website intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen. The database also serves as a voluntary reporting tool for capturing records of events involving either hydrogen or hydrogen-related technologies.

The focus of the database is on characterization of hydrogen-related incidents and near-misses, and ensuing lessons learned from those events. All identifying information, including names of companies or organizations, locations, and the like, is removed to ensure confidentiality and to encourage the unconstrained future reporting of events as they occur.

The intended audience for this website is anyone who is involved in any aspect of hydrogen use. The existing safety event records are mainly focused on laboratory settings that offer valuable insights into the safe use of hydrogen in energy applications and R&D. It is hoped that users will come to this website both to learn valuable lessons from the experiences of others as well as to share information from their own experiences. Improved safety awareness benefits all.

Development of the database has been primarily supported by the U.S. Department of Energy. While every effort is made to verify the accuracy of information contained herein, no guarantee is expressed or implied with respect to the completeness, causal attribution, or suggested remedial measures for avoiding future events of a similar nature. The contents of this database are presented for informational purposes only. Design of any energy system should always be developed in close consultation with safety experts familiar with the particulars of the specific application.

We encourage you to browse through the safety event records on the website and send us your comments and suggestions. We will continue to add new records as they become available.

How does H2LL work?

If you have an incident you would like to include in the H2LL database, please click the "Submit an Incident" button at the top of the page. You will be asked for a wide range of information on your incident. Please enter as much of the information as possible. In order to protect your and your employer's identities, information that may distinguish an incident (your contact information, your company's name, the location of the incident, etc.) will not be displayed in the incident reports on H2LL.

Lessons Learned Corner

Visit the Lessons Learned Corner Archives.

Key themes from the H2Incidents database will be presented in the Lessons Learned Corner. Safety event records will be highlighted to illustrate the relevant lessons learned. Please let us know what you think and what themes you would like to see highlighted in this safety knowledge corner. You can find all the previous topics in the archives.

A hydrogen explosion occurred in an Uninterruptible Power Source (UPS) battery room. The explosion blew a 400 ft2 hole in the roof, collapsed numerous walls and ceilings throughout the building, and significantly damaged a large portion of the 50,000 ft2 building. Fortunately, the computer/data center was vacant at the time and there were no injuries.

The facility was formerly a large computer/data center with a battery room and emergency generators. The company vacated the building and moved out the computer equipment; however the battery back-up system was left behind. The ventilation for the battery room appeared to be tied into a hydrogen monitoring system. The hydrogen sensor was in alarm upon emergency responders arriving at the scene (post-explosion). 911 callers view more

Incident Synopsis

A hydrogen explosion occurred in an emergency battery container used to transfer fuel elements. The container had five emergency power batteries. Damage was incurred by the explosion.

Cause

The H2 concentration in the container increased because the battery charger had been left on charge. In addition, the container was placed in an un-ventilated airlock. Ignition of the H2-air mixture was believed to be caused by the relays and micro switches activated when the airlock door was opened.

Incident SynopsisDuring shipping preparation operations, out-gassed hydrogen/oxygen from a recently discharged silver/zinc battery in a hermetically sealed drum was ignited. Ignition was caused by a spark generated by the scraping of the battery against the side of the drum. An explosion occurred, blowing the lid from the drum, charring desiccant bags within the drum, and causing other damage.CauseThe cause of the incident was inadequate handling/transporting/storage techniques. The battery was placed in the drum too soon after discharge.

Incident Synopsis
One man was killed and another severely injured while working with a portable battery power supply.

At a test facility, a water-submersible portable battery power supply was used to power lighting. The battery power supply contained two 12-volt lead-acid automotive batteries, a wiring harness, and switching relays mounted in an air-tight case suitable for submersion in water. The case possessed ½-inch aluminum walls and a 13.8-pound lid. The box had been used periodically over two years.

After charging all night, the battery power supply was moved into place and connected to the lighting. Two technicians started to test the unit. One technician rested his hand on the case lid while the second leaned over the lid and threw the switch to activate view more

A battery that was left on a charger over a given weekend was used to start a gasoline power generator. This battery was connected in series with another battery and the connection on the negative post was hand tightened. When an attempt was made to start the generator, the battery exploded on approximately the fifth click of the starter solenoid. No damage was done to any equipment or facilities and no one was injured.

The most probable cause of the accident was the severe overcharging of the battery (64 hours at 20 amp/hour). This charging created hydrogen, which combined with air or oxygen and an ignition source to form the explosion. One source of ignition could have been the loosely attached connection to the battery terminal. Another possible source may have been an view more