A fatal accident took place at an onshore processing facility for slop water from the offshore petroleum industry.

Drilling fluids, or mud, are typically oil-water emulsions consisting of base oil (continuous phase), water (dispersed phase), and emulsifying agents. Used drilling mud, or slop, is mud enriched with water and rock cuttings from drilling --- typically 60-80% water, 10-20% emulated base oil, and 10-20% rock cuttings. The used drilling fluids are collected in slop tanks on oil platforms and later shipped to onshore facilities for further processing.

On the day of the accident, two operators were trying to remove the lid from a manhole on top of a 1600-cubic meter storage tank. However, they were not able to unscrew the rusted bolts holding the lid in place, and view more

A refinery hydrocracker effluent pipe section ruptured and released a mixture of gases, including hydrogen, which instantly ignited on contact with the air, causing an explosion and a fire. Excessive high temperature, likely in excess of 1400°F (760°C), initiated in one of the reactor beds spread to adjacent beds and raised the temperature and pressure of the effluent piping to the point where it failed. An operator who was checking a field temperature panel at the base of the reactor and trying to diagnose the high-temperature problem was killed. A total of 46 other plant personnel were injured and 13 of these were taken to local hospitals, treated, and released. There were no reported injuries to the public.

Property damage included an 18-inch (46-centimeter) long tear in the view more

Incident Synopsis
A H2 delivery truck accident occurred on a highway. The truck was pulling a trailer containing gaseous H2. Upon entering a sharp curve, the truck and trailer started to weave and pushed to the side of the road. The truck and trailer rolled about 40 feet downhill; the trailer rolled over 1 1/2 times and the tractor once, ending in the upright position with the driver still in his seat. The truck was completely totaled, but little damage was incurred by the trailer. The trailer shell was satisfactory with normal venting through the stack. The rear cabinet doors were warped shut.

Cause

The accident occurred on a bad road, which was steep with many sharp curves. The driver was going too fast for the road conditions and the type of trailer being view more

Incident Synopsis
While a hot air dryer was being used to free a coupling in a hydrogen cryostat (an apparatus used to maintain constant low temperatures), a flash fire occurred. The H2 cryostat was being dismantled.

Causes
The temperature at the center of the cryostat was sufficiently low to liquefy air. The prescribed requirements for purging and bringing the cryostat to room temperature were circumvented. The H2 - air mixture was formed and ignition was assumed to be a spark from an open filament of the dryer.

Incident Synopsis

A hydrogen explosion occurred in an emergency battery container used to transfer fuel elements. The container had five emergency power batteries. Damage was incurred by the explosion.

Cause

The H2 concentration in the container increased because the battery charger had been left on charge. In addition, the container was placed in an un-ventilated airlock. Ignition of the H2-air mixture was believed to be caused by the relays and micro switches activated when the airlock door was opened.

An unplanned shutdown of the hydrogen supply system occurred, affecting the hydrogen furnaces in the plant. The apparent cause was an inadvertent valve closing, which was contrary to the written procedure.

A preventative maintenance activity was being conducted on the hydrogen gas system. Shortly after starting that work, various hydrogen gas users notified the emergency response personnel that the hydrogen supply safety alarms sounded, indicating an interruption of the hydrogen gas supply. As a result, the hydrogen furnaces shut down. This shut down is an automated process which injects an inert gas (nitrogen or argon) to prevent the introduction of oxygen and its mixing with any hydrogen gas. All shut downs functioned as designed. As a precautionary measure, fire protection view more

An employee noticed an unusual smell in a fuel cell laboratory. A shunt inside experimental equipment overheated and caused insulation on conductors to burn. Flames were approximately one inch high and very localized. The employee de-energized equipment and blew out the flames. No combustible material was in the vicinity of the experiment. The fire was contained within the fuel cell and resulted in no damage to equipment.

The employee was conducting work with a fuel cell supplied by oxygen gas. The hazard control plan (HCP) associated with the work was for use with fuel cells supplied by air or hydrogen, but not for oxygen, which yields a higher current density. The technician had set up the station wiring to handle a current of 100 amps and the shunt was configured to handle a view more