A hydrogen leak occurred from a 1-inch gate valve on a makeup gas line in an oil refinery gas oil hydrotreater unit. When the leak was discovered, the gas oil hydrotreater unit shutdown procedures were immediately implemented and emergency response was requested. The refinery response team along with county response teams responded, and after approximately 1/2 hour, the gas oil hydrotreater unit was fully shut down. Shutdown consisted of sufficiently depressurizing the unit and adding nitrogen to allow safe closing of the leaking 1-inch gate valve and installation of the associated missing bull plug.

During this event, the 1-inch gate valve was found to be open roughly 10% with no bull plug in the valve, allowing the hydrogen to leak to the atmosphere. In addition, a 1-inch bull view more

A small research sample of approximately 5 grams of aluminum hydride (alane) doped with 2-3 mol % TiCl3 contained within a glass ampoule ruptured after transit while stored in an office cabinet. The rupture was attributed to over-pressurization caused by hydrogen gas buildup within the sample over a four-month period. The glass ampoule, contained within a 0.2-inch thick cardboard shipping tube, was not a pressure-rated container. The rupture resulted in glass chards penetrating the protective cardboard shipping tube. The aluminum hydride, a fine powder, was released from the shipping tube during the pressure release. The fine aluminum powder leaked from the cabinet and set off a local smoke alarm that brought emergency responders to the scene. No personnel were present in the area when view more

During a refueling event, the operator activated the fueling lever in the wrong sequence. The vehicle filled to proper pressure, but filled faster than normal. Under different circumstances, this could have resulted in overheating of the receiving fuel tank.

Incident Synopsis

A technician accidentally loosened critical bolts holding a fitting to the top of an H2 tank, which caused a large hydrogen leak in the dewar. The fitting contained various instruments, and upon loosening the third bolt, H2 gas exited through an opening in the seal. The Viton or neoprene O-ring was blown out of its groove and was immediately frozen, making it impossible to reseal the fitting cover. The area was evacuated, the dewar was vented and the gasket was replaced. The ullage space was not purged with helium gas during the gasket replacement, which may have been responsible for small leaks which developed during the transfer.

Cause

The fitting containing the instruments was mounted on a flange, which was in turn secured to another flange. view more

Incident Synopsis
While a hot air dryer was being used to free a coupling in a hydrogen cryostat (an apparatus used to maintain constant low temperatures), a flash fire occurred. The H2 cryostat was being dismantled.

Causes
The temperature at the center of the cryostat was sufficiently low to liquefy air. The prescribed requirements for purging and bringing the cryostat to room temperature were circumvented. The H2 - air mixture was formed and ignition was assumed to be a spark from an open filament of the dryer.

One morning a saltwell pump was placed in operation. Operation of this equipment requires that the Standard Hydrogen Monitoring System (SHMS) cabinet be in operation. Later that morning, during the morning surveillance rounds, the Standard Hydrogen Monitoring System (SHMS) cabinet was found not to be in the operational mode.

On the previous day, the night shift saltwell operator assigned to run the saltwell pump had placed the SHMS monitor in operational mode; however, the saltwell system was not started at this time. Shift turnover was conducted and the condition of the SHMS was turned over to the appropriate saltwell operator and shift manager. During the day shift the day shift operator assigned to the complex received approval from the operations engineer to place the SHMS view more

A facility representative observed pipe-fitters enter a containment tent around a riser with a tool bag that contained a mixture of steel and copper/beryllium tools. The top flange was loosened using a copper/beryllium socket and a steel torque wrench. When questioned, the pipe-fitters correctly stated that this was allowable for initial loosening and tightening of these bolts. A copper/beryllium ratchet was used to accomplish the bolt removal. The bonded riser was shifted to allow access for the IH technician. The standard hydrogen monitoring system (SHMS) cabinet and local sample showed no hydrogen/flammable gas was present.

While the continuous vapor sample was being taken, the pipe-fitters proceeded to put together the copper/beryllium ratchet and socket with a 10" view more

Facility management confirmed that a hydrogen gas cylinder did not comply with the limiting condition for operation (LCO) for flammable gas control systems in the lab's safety requirements. Earlier erroneous calculations had shown that a release of the entire contents of the cylinder into the hood could not reach the lower flammability limit (LFL).

The facility manager determined that the LCO was applicable and immediately entered the action statement in the safety system, which required immediate termination of normal operations in the affected wing of the building. Because normal operations had already been terminated in the wing for HVAC maintenance, further efforts to terminate normal operations were not necessary. The hydrogen cylinder was removed from the hood, thus view more

An unplanned shutdown of the hydrogen supply system occurred, affecting the hydrogen furnaces in the plant. The apparent cause was an inadvertent valve closing, which was contrary to the written procedure.

A preventative maintenance activity was being conducted on the hydrogen gas system. Shortly after starting that work, various hydrogen gas users notified the emergency response personnel that the hydrogen supply safety alarms sounded, indicating an interruption of the hydrogen gas supply. As a result, the hydrogen furnaces shut down. This shut down is an automated process which injects an inert gas (nitrogen or argon) to prevent the introduction of oxygen and its mixing with any hydrogen gas. All shut downs functioned as designed. As a precautionary measure, fire protection view more

A health physics technician (HPT) discovered that a scaler in an analytical laboratory was out of P-10 gas (90%Ar and 10% CH4). The HPT went to the building where auxiliary gas cylinders are stored. He located a P-10 gas cylinder and turned to search for a hand-cart. There were no hand-carts present, and the technician had to get one from another room. When he returned to the cylinder storage area, he loaded the wrong cylinder. It contained hydrogen gas instead, however, the two cylinders were next to each other and they were basically identical. The empty cylinder was then replaced by the full one and the scaler was purged for several minutes before it was used. The alpha channel worked well, however, the beta channel did not respond. An instrument technician was contacted to identify view more