Operators in a powdered metals production facility heard a hissing noise near one of the plant furnaces and determined that it was a gas leak in the trench below the furnaces. The trench carried hydrogen, nitrogen, and cooling water runoff pipes as well as a vent pipe for the furnaces.

Maintenance personnel presumed that the leak was nonflammable nitrogen because there had recently been a nitrogen piping leak elsewhere in the plant. Using the plant's overhead crane, they removed some of the heavy trench covers. They determined that the leak was in an area that the crane could not reach, so they brought in a forklift with a chain to remove the trench covers in that area.

Eyewitnesses stated that as the first trench cover was wrenched from its position by the forklift view more

Overview
During start-up operation of a high-temperature, high-pressure plant using hydrogen, hydrogen gas leaked from the flange of a heat exchanger and a fire occurred. The leakage occurred for two reasons:

Insufficient tightening torque control was carried out during hot-bolting and an unbalanced force was generated across the bolts.
A temperature rise was induced across the heat exchanger as a result of a revamping activity, during a turnaround shutdown.

Background
Hot-bolting: In equipment and piping that operate at high temperatures, as the temperatures rise, the tightening force decreases, thus re-tightening of bolts is necessary. This work is called hot-bolting. The design conditions of the evaporator where the fire occurred were 2.4 MPaG, view more

Incident Synopsis
While a hot air dryer was being used to free a coupling in a hydrogen cryostat (an apparatus used to maintain constant low temperatures), a flash fire occurred. The H2 cryostat was being dismantled.

Causes
The temperature at the center of the cryostat was sufficiently low to liquefy air. The prescribed requirements for purging and bringing the cryostat to room temperature were circumvented. The H2 - air mixture was formed and ignition was assumed to be a spark from an open filament of the dryer.

Incident Synopsis
While attempting to replace a rupture disk in a liquid H2 vessel, H2 gas was released and ignited. In fighting the fire, liquid N2 was sprayed onto a second liquid H2 vessel located nearby. This resulted in cracking of the outer mild steel vacuum jacket. The loss of the vacuum caused a rapid increase in pressure and rupture of the burst disk of the second vessel. H2 boiled off and was burned in the fire.

Cause
The rupture disk was being replaced with a load of liquid H2 in the vessel and no separating inerting gas. The H2-air mixture was probably ignited by static discharges. Rupture of the second vessel burst disk was caused by the low-temperature exposure of the mild steel vacuum jacket.

Incident Synopsis

A hydrogen compressor had been shut down for repairs and was being put back into service when an explosion occurred, resulting in property damage. The compressor was equipped with interchangeable intake and outlet valves.

Cause

The discharge valve was installed in the intake valve position, causing the cylinder head to blow off and release H2 to the atmosphere. The ignition source was not indicated.

Incident Synopsis
A technician was welding a cable suspended over a stainless steel H2 instrument line. During the welding process, two holes were accidentally burned through the hydrogen tubing. The operator heard a hissing sound and closed the valve, but the hydrogen had already ignited and it burned his hand while he was feeling for a leak.

Cause
A short during welding caused the pinholes in the tubing containing the gaseous H2.

Incident Synopsis

A hydrogen explosion occurred in an emergency battery container used to transfer fuel elements. The container had five emergency power batteries. Damage was incurred by the explosion.

Cause

The H2 concentration in the container increased because the battery charger had been left on charge. In addition, the container was placed in an un-ventilated airlock. Ignition of the H2-air mixture was believed to be caused by the relays and micro switches activated when the airlock door was opened.

Incident SynopsisDuring shipping preparation operations, out-gassed hydrogen/oxygen from a recently discharged silver/zinc battery in a hermetically sealed drum was ignited. Ignition was caused by a spark generated by the scraping of the battery against the side of the drum. An explosion occurred, blowing the lid from the drum, charring desiccant bags within the drum, and causing other damage.CauseThe cause of the incident was inadequate handling/transporting/storage techniques. The battery was placed in the drum too soon after discharge.

Facility management confirmed that a hydrogen gas cylinder did not comply with the limiting condition for operation (LCO) for flammable gas control systems in the lab's safety requirements. Earlier erroneous calculations had shown that a release of the entire contents of the cylinder into the hood could not reach the lower flammability limit (LFL).

The facility manager determined that the LCO was applicable and immediately entered the action statement in the safety system, which required immediate termination of normal operations in the affected wing of the building. Because normal operations had already been terminated in the wing for HVAC maintenance, further efforts to terminate normal operations were not necessary. The hydrogen cylinder was removed from the hood, thus view more

An unplanned shutdown of the hydrogen supply system occurred, affecting the hydrogen furnaces in the plant. The apparent cause was an inadvertent valve closing, which was contrary to the written procedure.

A preventative maintenance activity was being conducted on the hydrogen gas system. Shortly after starting that work, various hydrogen gas users notified the emergency response personnel that the hydrogen supply safety alarms sounded, indicating an interruption of the hydrogen gas supply. As a result, the hydrogen furnaces shut down. This shut down is an automated process which injects an inert gas (nitrogen or argon) to prevent the introduction of oxygen and its mixing with any hydrogen gas. All shut downs functioned as designed. As a precautionary measure, fire protection view more