Incident Synopsis

A hydrogen explosion occurred in an emergency battery container used to transfer fuel elements. The container had five emergency power batteries. Damage was incurred by the explosion.

Cause

The H2 concentration in the container increased because the battery charger had been left on charge. In addition, the container was placed in an un-ventilated airlock. Ignition of the H2-air mixture was believed to be caused by the relays and micro switches activated when the airlock door was opened.

Summary
A faulty modification to a multiple-gas piping manifold allowed mixing of hydrogen and oxygen that resulted in a storage tube explosion. Several employees suffered severe burn injuries from the incident.

Incident Synopsis
An employee, without authorization, fabricated and installed an adapter to connect a hydrogen tube trailer manifold to an oxygen tube trailer manifold at a facility for filling compressed-gas cylinders for a variety of gases, including hydrogen, oxygen, nitrogen, and helium. A subsequent improper purging procedure allowed oxygen gas to flow into a partially filled hydrogen tube on a hydrogen tube trailer. An ignition occurred in the manifold piping system and a combustion front traveled into the hydrogen tube where, after traveling about a view more

A large, hydrogen-cooled generator is driven by steam turbines at a power station. During maintenance shutdowns, the hydrogen cooling loop in the generator is purged with carbon dioxide. After CO2 concentrations are measured with a densitometer to verify the complete removal of hydrogen, the generator is purged with air and the maintenance is performed.

This purging procedure was used prior to the explosion. The CO2 reading was reported to be 100 percent CO2 at the top of the generator. The cooling system was then purged with air and a 1/2 inch pipe in the cooling loop was cut to install some new instrumentation. When the pipe was cut, pressurized gas was emitted at the opening. Workers assumed the gas was either carbon dioxide or air and proceeded with the new instrument view more

A facility representative observed pipe-fitters enter a containment tent around a riser with a tool bag that contained a mixture of steel and copper/beryllium tools. The top flange was loosened using a copper/beryllium socket and a steel torque wrench. When questioned, the pipe-fitters correctly stated that this was allowable for initial loosening and tightening of these bolts. A copper/beryllium ratchet was used to accomplish the bolt removal. The bonded riser was shifted to allow access for the IH technician. The standard hydrogen monitoring system (SHMS) cabinet and local sample showed no hydrogen/flammable gas was present.

While the continuous vapor sample was being taken, the pipe-fitters proceeded to put together the copper/beryllium ratchet and socket with a 10" view more

An employee noticed an unusual smell in a fuel cell laboratory. A shunt inside experimental equipment overheated and caused insulation on conductors to burn. Flames were approximately one inch high and very localized. The employee de-energized equipment and blew out the flames. No combustible material was in the vicinity of the experiment. The fire was contained within the fuel cell and resulted in no damage to equipment.

The employee was conducting work with a fuel cell supplied by oxygen gas. The hazard control plan (HCP) associated with the work was for use with fuel cells supplied by air or hydrogen, but not for oxygen, which yields a higher current density. The technician had set up the station wiring to handle a current of 100 amps and the shunt was configured to handle a view more