Overview
During start-up operation of a high-temperature, high-pressure plant using hydrogen, hydrogen gas leaked from the flange of a heat exchanger and a fire occurred. The leakage occurred for two reasons:

Insufficient tightening torque control was carried out during hot-bolting and an unbalanced force was generated across the bolts.
A temperature rise was induced across the heat exchanger as a result of a revamping activity, during a turnaround shutdown.

Background
Hot-bolting: In equipment and piping that operate at high temperatures, as the temperatures rise, the tightening force decreases, thus re-tightening of bolts is necessary. This work is called hot-bolting. The design conditions of the evaporator where the fire occurred were 2.4 MPaG, view more

Summary

A hydrogen generation plant experienced a fire and significant damage due to a concussive combustion event that started in a high-pressure hydrogen feed pipe.

System Description

A certain hydrogen plant is designed to continuously produce hydrogen at a purity of 99.75% and at a rate of 510 m3 per day. Hydrogen is produced in two banks of cells filled with a strong solution of caustic soda. Current is passed through the cells to produce hydrogen and oxygen. The oxygen is vented directly to the atmosphere, while the hydrogen is piped to the gasholder. The gasholder is a low-pressure storage vessel capable of storing 28 m3 of gas. It is constructed in two parts. The bottom section is a large round tank. The upper section is an inverted tank or bell that is view more