Within the International Space Station (ISS) oxygen generator, an increase in differential pressure across a pump supplying return water to a PEM electrolyzer fuel cell stack had persisted over a 4-month period and was approaching the shut-off limit for the system. This decrease in performance was suspected to be caused by water-borne catalyst fines containing platinum black and TeflonĀ®* binder materials, shed by the fuel cell stack, and accumulated within the pump's inlet filter. Maintenance in the field was required.

The system had been designed for factory maintenance, and no contingency had been planned to handle field maintenance for such a circumstance. An initial assessment of hazards for the proposed filter maintenance raised the concern that opening the water line view more

A metal hydride storage system was refilled using compressed hydrogen in a closed lab environment. The tank system is an in-house development and is optimized for high hydrogen storage density and use with an air-cooled fuel cell. The system is equipped with a pressure relief valve that opens gradually at 35 bar to protect the tank from overpressure conditions. The tank itself is designed to adsorb 400 g of hydrogen at a pressure less than 15 bar.

For refueling, the secondary pressure on the compressed hydrogen supply container was set to 20 bar and the adsorption of the hydride was started without hydrogen flow limitation. Due to the exothermic nature of the hydride upon recharge, as expected a sharp increase in tank temperature was measured. The tank was uncooled because the view more

Overview
During operation of a succinic acid plant, hydrogen leaked from a mounting joint on a safety valve at the upper part of a reactor, which generated a hydrogen flame. Prior to the incident, the safety valve was removed and reattached during an inspection at a turnaround shutdown. An incorrectly sized, smaller gasket was installed on the joint, and the tightening force on the bolts was inadequate. Therefore, a gap was generated as time went by and un-reacted hydrogen leaked.

Background
In the case of many leak tests after construction, a leak is checked by a soap test after pressurizing piping and facilities for the test. (A soap test is conducted by pouring soap suds at the place to be checked (mainly a joint part) after pressurizing. If bubbles are found, view more

While research staff were working in a lab, a staff member opened the primary valve to a 0.2" (1500 psi) hydrogen gas line connected to a manifold supplying instruments in the lab. Upon opening the valve, the hydrogen gas line failed at a fitting on the switching manifold, releasing a small amount of hydrogen gas. The staff member closed the valve immediately, then inspected the gas line and found the front ferrule (of the compression-style fitting) to be missing. There were no injuries or damage to equipment.

In the follow-on discussion with research staff, it was learned that approximately one month earlier, a similar condition (front ferrule missing from a fitting) was found while performing a modification to a similar manifold. Following a critique, management expressed view more

A 2000-psia-rated gas cylinder (nominal size 10"x1 1/2") was being filled with hydrogen to a target pressure of 1500 psia. The cylinder suffered a failure at an indicated pressure of 1500 psia during filling. Investigation of the failure subsequently revealed that a faulty digital readout had allowed the cylinder to be over-pressurized. There were no safety consequences due to the failure and no damage to the facility or equipment. The cylinder was being filled in a test vault that was specially designed for the high-pressure burst testing of pressure vessels and components. While no over-pressure cylinders were released from the laboratory for use, this incident is being reported to address the potential and subsequent lessons learned.

Investigations revealed that the view more

During preparation of a new hydrogen storage material, ammonia borane (AB) loaded onto mesoporous carbon, an unexpected incident was observed. As with all procedures with new materials the work is conducted on a small scale and in a laboratory fume hood. They followed the procedures that they had used for absorption of ammonia borane onto mesoporous silica without incident.

To absorb the solid AB into a scaffold material they dissolve AB in a dry aprotic polar solvent, THF. The saturated solution of AB in THF is added to the mesoporous carbon material in a round bottom flask, stirred for 10 minutes to saturate the mesoporous scaffold with AB and then the solvent is slowly removed under vacuum. At this point the sample is assumed to be prepared and ready for transfer to a sample view more