A hydrogenation experiment was being performed under 60 atm hydrogen, inside a high-pressure reactor cell. The experiment was conducted inside a fume hood and left overnight. The hood caught fire during the night, resulting in fire damage to the fixture, hood, and exhaust duct, as well as water damage to much of the building. Based on the local fire department investigation, the fire started from faulty electrical wiring that was used to provide power for reactor cell heating. The electrical fire ignited solvent that was in a dispensing bottle inside the hood, which subsequently overheated the reactor cell, rupturing the seals. The rupture released hydrogen from the cell and attached supply tank, further fueling the fire. Nobody was injured in the incident, and damages were limited. It view more

The over-pressurization of a laboratory ball mill reactor designed for operation under slightly elevated pressures resulted in a serious injury. The apparatus had been routinely operated under argon and hydrogen pressures of 5-10 atmospheres for nearly two years. The apparatus had not been tested for operation at pressures greater than 10 atm.

A visiting intern, frustrated in attempts to hydrogenate magnesium silicide through ball milling in the previously noted pressure range, attempted to perform the operation at higher pressures. The approximately 70-ml reactor was loaded in a glove box with 0.5 g of magnesium silicide and six milling balls. Upon pressurization to 80 atmospheres, a 270-degree rupture occurred around the perimeter of the reactor. The blow-out of the reactor view more

The bulkhead between a liquid hydrogen tank and a liquid oxygen tank failed due to a series of events. Air services to the building were shut down for repairs and the facility had switched to an emergency nitrogen supply. Failure to switch back to service air when it became available, led to the mishap.

The emergency supply became depleted and two valves in the normal nitrogen purge system failed in the open position, releasing the high-pressure nitrogen gas from the manifold into the liquid hydrogen tank. The gas flow raised the liquid hydrogen tank pressure to 4.5 psig. That was sufficient to rupture the bulkhead wall.

A solution of potassium carbonate was being drawn off to an inventory tank for a turnaround/shutdown maintenance activity at a refinery's hydrogen production unit. On the day of the incident, the solution level in the tower wasn't checked as it should have been, which resulted in hydrogen gas flowing back into the tank until the increased pressure caused the tank to explode. The direct cause of the incident was the workers neglecting to check the solution level in the tower. It is not known whether the potential for backflow of hydrogen gas into the inventory tank was understood beforehand or not.

Incident Synopsis
An explosion occurred due to unexpected backflow of hydrogen gas while a solution of potassium carbonate was being drawn off to an view more

A hydrogen explosion occurred at a plant, damaging a wall adjacent to the hydrogen storage assembly. The investigation revealed that the explosion was the consequence of deficiencies in components integral to the hydrogen storage assembly, and that this assembly belonged to a supplier contracted to provide hydrogen to the plant. The analysis revealed that had the supplier properly installed and maintained this equipment, this incident would have been prevented. By receiving assurance, on an ongoing basis, that the supplier was properly maintaining this equipment, the company could have also reduced the chance of occurrence of this incident.

A hydrogen supplier was awarded a contract in 1990 to supply the plant with hydrogen as well as to provide view more

An employee of an incubator company that was working in a university-owned laboratory facility was checking the hydrogen pressure through the main valve on a hydrogen cylinder. The regulator on this cylinder had not been properly closed. Hydrogen escaped through the regulator and was ignited. The fire was contained in the laboratory and extinguished by the building's fire sprinkler system before fire crews arrived. There were no injuries, and damage estimates were not available.