As part of preparing for material disposal, a small fire occurred within a fume hood as a researcher was combining several spent ammonia borane (AB) samples that had previously been stored uncovered in the back of the hood for 6+ months. These AB samples consisted primarily of two 40-gram products of a 50wt% AB in silicone oil that had been thermally dehydrogenated. A small amount of unreacted AB slurry is believed to also have been present.

During project clean-up, partially spent (thermally reacted) ammonia borane (AB) residue from a previous experiment was mixed with a small amount of water to rinse the residue from its container. The water reacted with the spent AB resulting initially in a large heat release followed immediately by a fire. It appears that the water addition view more

A single-stage regulator "failed" while flowing hydrogen gas from a standard 200 cu.ft. gas bottle. The regulator had functioned properly prior to the event through several on-off cycles. During the event, a solenoid valve was opened to allow hydrogen to flow, when a rather loud noise was noted and gas began flowing out of the pressure relief valve on the side of the regulator. It was noted that the low-pressure gauge on the regulator was "pegged" at the high side (>200 psi). The valve on the bottle was shut off, and hydrogen flow was immediately stopped. Hydrogen flowing out of the relief valve did not ignite. With the bottle shut off, the regulator was removed and replaced with another regulator of the same type, and activities continued.

The failed view more

The malfunctioning of the non-return valve of the hydrogen compressor caused the pressure between the hydrogen bottle and the compressor to rise up to the maximum allowed pressure of 275 barg. As a consequence, as foreseen by the safety system, the rupture disk of the safety valve broke and the hydrogen content of the gas bottle and the pipe section involved was released on top of the building. The flame was seen for a very short period by a guard, and could have been caused by the following series of events:

Expansion of hydrogen at the end of the exhaust pipe.
Consequent mixing of hydrogen and air up to a near-stoichiometric mixture and increase of gas temperature.
Mixture ignition due to sparks from static electricity generated by gas molecule friction against view more

SummaryA fire occurred in a battery manufacturing plant that was about to cease operations for the night. The fire caused an estimated $2.4 million in property damage when an electrical source ignited combustible hydrogen vapors.BackgroundThe incident occurred in the forming room, where wet cell batteries were stored for charging on metal racks. The facility had a wet-pipe sprinkler system, but no automatic hydrogen detection equipment.Incident SynopsisAt 11:52 pm, a security guard on patrol noticed a free burning fire in the forming room and notified the fire department. It took fire fighters almost three hours to bring the fire under control.Although the facility was equipped with a wet-pipe sprinkler system, the forming room's branch had been disconnected 10 to 15 years before view more

Incident Synopsis
While attempting to replace a rupture disk in a liquid H2 vessel, H2 gas was released and ignited. In fighting the fire, liquid N2 was sprayed onto a second liquid H2 vessel located nearby. This resulted in cracking of the outer mild steel vacuum jacket. The loss of the vacuum caused a rapid increase in pressure and rupture of the burst disk of the second vessel. H2 boiled off and was burned in the fire.

Cause
The rupture disk was being replaced with a load of liquid H2 in the vessel and no separating inerting gas. The H2-air mixture was probably ignited by static discharges. Rupture of the second vessel burst disk was caused by the low-temperature exposure of the mild steel vacuum jacket.