U.S. Department of Energy: Fuel Cell Technologies Office Overview

6th International Conference on Hydrogen Safety: Plenary

Yokohama, Japan October 19-21, 2015

Will James

Project Manager
Safety, Codes and Standards Program
Fuel Cell Technologies Office
U.S. Department of Energy

"We've got to invest in a serious, sustained, all-of-the-above energy **strategy** that develops every resource available for the 21st century."

- President Barack Obama

"As part of an all-of-the-above energy approach, fuel cell technologies are paving the way to competitiveness in the global clean energy market and to new jobs and business creation across the country."

> - Secretary Moniz, U.S. Department of Energy

Secretary Moniz at DC Auto Show

Office of Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 3

Sustainable TRANSPORTATION

Renewable ELECTRICITY GENERATION

NETCLY Saving HOMES, BUILDINGS, & MANUFACTURING

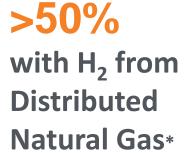
Sustainable TRANSPORTATION

Hydrogen and Fuel Cells

Transportation Efficiency

Diverse Fuel Sources

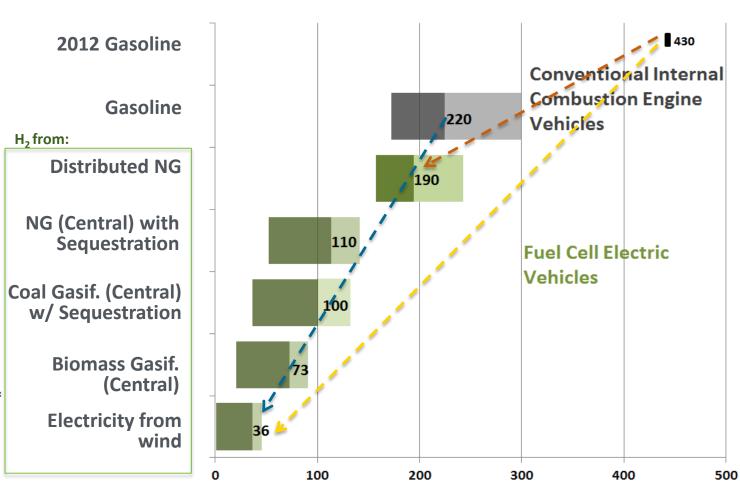
Domestic & Renewable


Bioenergy

National Energy Goals & Climate Action Plan

Net Oil Imports
50% by 2020

FCEVs Reduce Greenhouse Gas Emissions



>80% with H₂ from Renewables*

>90%
with H₂ from
Renewables**
(Wind)

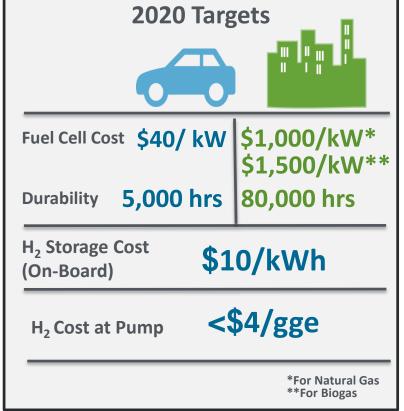
*Compared to 2035 gasoline vehicle **Compared to 2012 gasoline vehicle

Well-to-wheels CO₂ emissions/mile

Source: http://hydrogen.energy.gov/pdfs/13005_well_to_wheels_ghg_oil_ldvs.pdf
Advanced 2035 technologies

FCTO Overview

Mission


To enable the **widespread commercialization** of hydrogen and fuel cell technologies, which will reduce petroleum use, greenhouse gas (GHG) emissions, and criteria air pollutants, and will contribute to a more diverse energy supply and more efficient use of energy.

Impact

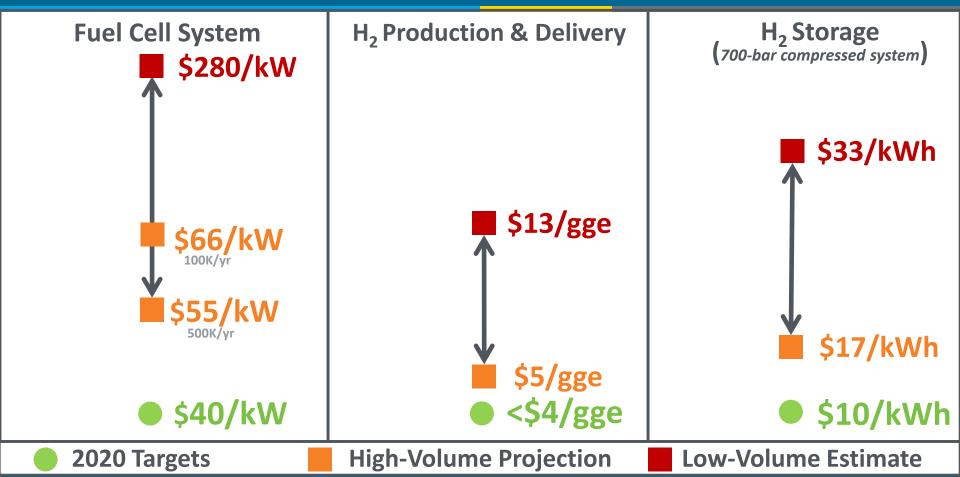
2-4 million barrels per day petroleum reduction by 2050

200- 450 million metric tons/year GHG emissions reduction by 2050

Hydrogen & Fuel Cells Budget

	FY 15	FY 15	FY 16	
Key Activity	(\$ in thousands			
	Request	Approp.	Request	
Fuel Cell R&D	33,000	33,000	36,000	
Hydrogen Fuel R&D ¹	36,283	35,200	41,200	
Manufacturing R&D	3,000	3,000	4,000	
Systems Analysis	3,000	3,000	3,000	
Technology Validation	6,000	11,000	7,000	
Safety, Codes and Standards	7,000	7,000	7,000	
Market Transformation	3,000	3,000	3,000	
NREL Site-wide Facilities Support	1,700	1,800	1,800	
Total	\$92,283	\$97,000	103,000	

Office	FY 2015
EERE	\$97M
Basic Science ²	~\$20M
Fossil Energy, SOFC	\$30M


FY 2015 DOE Total: **~\$150M**

Number of Recipients funded from 2008-2015		
Industry	>110	
Universities	>100	
Laboratories	12	

More stable R&D funding requests and appropriations in recent years > 20 new projects including 11 new Incubator projects (2014-2015)

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D ²Estimated from FY14 appropriation

DOE Cost Targets and Status

Key Challenges- Examples

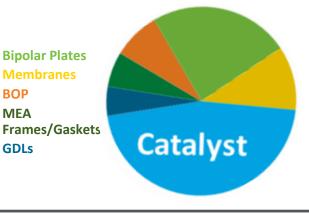
- PGM loading
 - Catalyst and membrane durability
- Electrode performance and durability
- Efficiency and Reliability
- Feedstock and Capital Costs
- Compression, Storage and Dispensing (CSD) Costs

conversion

Composite/resin materials

Carbon fiber precursors and

- Composite/resin materials
- BOP and assembly costs


10/14/2015

Techno-Economic Analysis Guides R&D Portfolio

Bipolar Plates Membranes BOP MEA

GDLs

Focusing on...

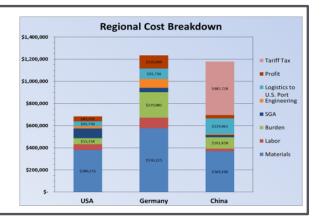
Low and Non PGM Catalysts, Alkaline **Membranes**

H₂ Station

Storage Cooling **Dispensing** Other

Advanced Compression **Alternate Approaches**

BOP/Assembly Other processing Resin



Low Cost Carbon Fiber (CF)

Long term Materials Approaches

Global Competitiveness Analysis including:

- Global Cost Breakdown
- Design for Manufacturing
- Value Stream Mapping GIWN \(\)

Integrated Network of Regional Technical Centers

Located at

- 1. East Coast (CCAT)
- 2. Midwest at the OFCC
- 3. Central States at NREL's National Fuel Cell Technology Evaluation Center
- 4. West Coast (UC Irvine)
- Hold supply chain exchanges

Activities (Examples)

Promote cooperation between suppliers & standardization of component specs

Fuel Cell and H₂ Opportunity Center

- Comprehensive online database
- Project activities include:
 - Encourage supplier engagement
 - Release and maintain public directory
 - Conduct outreach campaign (social media, etc.)

H₂ USA

Partners

Mission

To address hurdles to establishing infrastructure, fueling hydrogen enabling the large scale adoption of fuel cell electric vehicles

Structure

4 Working Groups coordinated by the **Operations** Steering Committee

Working Groups addressing H₂ Infrastructure Challenges:

Hydrogen **Fueling Station**

Locations Roadmap

Financing Infrastructure

Market Support & Acceleration

International Partnerships

International Partnership for Hydrogen and Fuel Cells in the Economy

- Representatives from 17 member countries & the European Commission
- Facilitates international collaboration and a forum for advancing policies education
- Recent Activities (thru RCS WG):
 - Launched international round robin testing of Type IV tanks

International Energy Agency

- Implementing Agreements
 - Advanced Fuel Cells Implementing Agreement: 13 member countries currently implementing seven annexes
 - Hydrogen Implementing Agreement: 18 member countries, plus the European Commission currently implementing nine tasks
 - New Task on Hydrogen Safety being defined

Strong International Collaboration on Safety

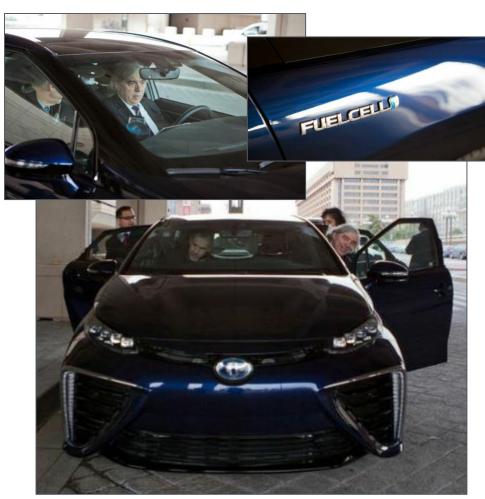
6th International Conference on Hydrogen Safety
October 19-21, 2015 in Kawasaki/Yokohama, Japan (Hosted by Technova)

IA HySafe Research Priorities Workshop

- Facilitate knowledge sharing for further development and dissemination of knowledge and coordination of international research activities in the field of hydrogen safety

Outreach and Communication Efforts

Publications- ~100/yr


- Monthly Newsletter
- Success Stories
- News Alert
- Blogs

Educated:

- >12,000 teachers
- >35,000 code officials & first responders

Investor Days

- New York and California
- House Senate Caucus Events
- Annual Merit Review & Peer Evaluation
 - June 2015- >1,800 attendees
- Ride-n-Drives

U.S Department of Energy Secretary Ernest Moniz test driving the Toyota Mirai

The Path Going Forward

Continue to strengthen R&D Activities

Accelerate Tech to Market

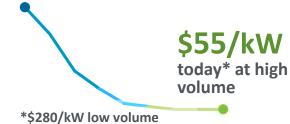
Conduct strategic and selective demonstrations

Conduct key analyses to guide RD&D

Leverage partnerships to maximize impact

Thank you

hydrogenandfuelcells.energy.gov


U.S. Hydrogen and Fuel Cells Progress

In R&D...

In the Market...

50% Cost Reduction in fuel cell systems

\$124/kW in 2006

Increase in fuel cell durability

Platinum content reduction in fuel cells

FCEVs in the US:

Recently announced

Now Leasing

In Auto Shows

Public-private partnership addressing infrastructure:

4X Increase in partners and growing since 2013

State Activities:

- 8 states committed to 3.3 million ZEVs by 2025
- CA has committed to 100 H₂ stations

Key Challenges

- **Fuel Cell Cost and Durability**
- **Hydrogen Production**
- **Hydrogen Delivery**
- **Hydrogen Storage**

- **Infrastructure**
- Manufacturing and supply chain
- Safety codes and standards
- Widespread public acceptance

Why? FCEVs are on U.S. Roads Now!

Toyota Mirai FCV

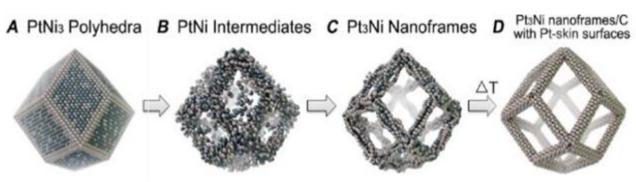
1st commercially available FCEV for sale in the US

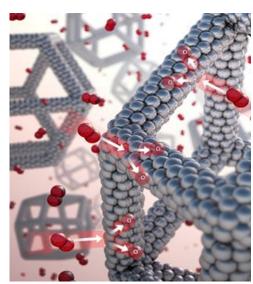
Toyota Mirai Fuel Cell Vehicle

Now Leasing...

Hyundai Tucson Fuel Cell SUV

In Auto Shows...


Honda Fuel Cell Electric Vehicle


OEMs bringing fuel cells to showrooms and driveways

- **5X** decrease in platinum loading
- 2X reduction system cost since 2006

30X increase in catalyst activity recently demonstrated in the lab

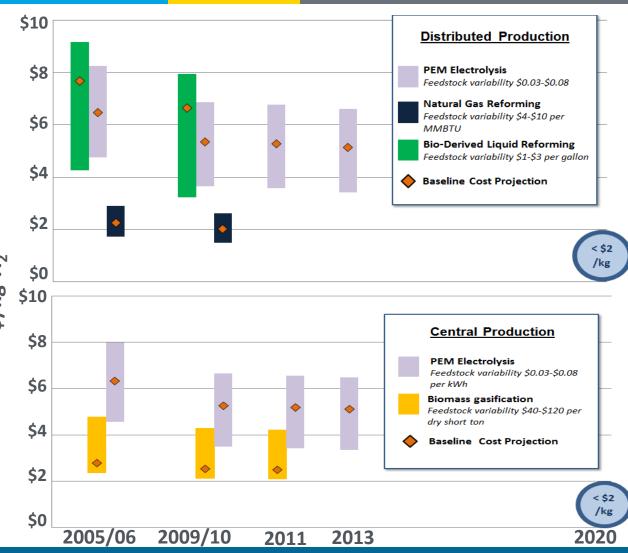
Collaboration between UC Berkeley and ANL

Hydrogen Production Strategies

Current Technology

- Natural Gas (D/C)
- Electrolysis (D)

Near to Mid-Term:


- Electrolysis- Wind and Solar Powered (D/C)
- Bio-derived Liquids (D/C)
- Fermentation (D/C)

Long-Term (not shown):

Central Renewable H₂

- Solar-based water splitting
- Photolytic Bio-hydrogen

D- Distributed C- Central

H₂ from NG can be competitive today - renewables is a longer-term focus