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1. General 
The effects of hydrogen on aluminum alloys are not well understood; indeed, there is much 
conflicting information. Despite the perception that aluminum alloys are immune to gaseous 
hydrogen [1, 2], the micromechanics of deformation in aluminum are strongly affected by 
hydrogen [3, 4]. Aluminum alloys can be susceptible to stress corrosion cracking [5], particularly 
high-strength alloys for which hydrogen-assisted fracture is one mechanistic interpretation of 
property degradation [1, 6]. The literature on stress corrosion cracking of aluminum alloys is 
extensive, although testing is generally performed in aqueous or “wet” environments where 
hydrogen concentrations that develop in aluminum are many orders of magnitude greater than 
hydrogen concentrations that develop from dry hydrogen gas. Based on the available 
experimental data obtained during relatively short-term exposure to hydrogen gas [7-9], 
aluminum alloys appear to have good resistance to hydrogen-assisted fracture in dry 
environments.  
 
Thermodynamically, aluminum has a low equilibrium solubility for hydrogen [10]. Moreover, 
the native oxide acts as a kinetic barrier to hydrogen uptake since the kinetics of formation of 
atomic hydrogen (a necessary step to hydrogen uptake and hydrogen-assisted fracture) is limited 
on the oxide surface. In the presence of electrochemical environments and wet hydrogen, 
however, atomic hydrogen can be readily produced and enter the aluminum lattice [1]. Under 
these conditions, the concentration of hydrogen in aluminum can be very high, equivalent to 
concentrations developed from many millions of atmospheres of dry hydrogen gas [11, 12]. 
Significant degradation of fracture properties of high-strength aluminum alloys has been reported 
in “wet” gases [1].  
 
Hydrogen-assisted fracture in all materials depends on the characteristics of hydrogen transport 
[13, 14]; therefore, interpretation of testing results for aluminum alloys in hydrogen gas must be 
made with consideration of potential kinetic limitations on hydrogen transport. However, there 
are large variations in the literature data on hydrogen solubility and diffusivity [10, 15]. Studies 
of hydrogen transport in aluminum are complicated by the low solubility of hydrogen [10], the 
kinetic effects associated with the native oxide and hydrogen trapping, such as the interactions of 
hydrogen atoms with vacancies [15, 16] or other microstructural features [10, 15]. 
 
1.1 Composition 
The Aluminum Association (AA) designations have been widely adopted for aluminum alloys. 
The nominally pure aluminum alloys are designated 1XX for cast alloys and 1XXX for wrought 
alloys. Common designations of commercially pure wrought aluminum include 1060 (99.6%) 
and 1100 (99%), while 1199 (99.99%) is a common super purity grade.  
 
1.2 Other Designations  
UNS A91060 (1060), UNS A91100 (1100), UNS A91199 (1199), UNS A91350 (1350) 
 
 
2. Permeability, Diffusivity and Solubility  
The solubility and diffusivity of hydrogen in aluminum alloys are reviewed in Refs. [10, 15], 
showing significant scatter in the data. Reported values for hydrogen solubility in pure aluminum 
vary by six orders of magnitude when extrapolated to room temperature [10], with the largest 
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reported value at room temperature being about 2.5 x 10-6 mol H2 m
-3 MPa-1/2. The low solubility 

of hydrogen in aluminum makes it particularly difficult to quantify lattice hydrogen 
concentrations (and thus infer solubility) by gas extraction techniques, which do not distinguish 
between hydrogen dissolved in the metal and hydrogen trapped by specific metallurgical features 
[10]. Thus, care should be extended to the extrapolation of hydrogen solubility trends from high-
temperature to ambient temperature [15]. Gas permeation experiments allow for determination of 
the rate of hydrogen transport through a metal at steady state (i.e., permeation), as well as the 
diffusivity of hydrogen through the metal by analysis of transport transients. Solubility is the 
ratio of permeability and diffusivity (Ref. [17] provides some background on the thermodynamic 
origin of the relationships between permeation, diffusion and equilibrium dissolution), thus 
hydrogen solubility can be determined accordingly.  
 
Reported values of hydrogen diffusivity for pure aluminum vary by at least two orders of 
magnitude at elevated temperature, and by many orders of magnitude at ambient temperature. In 
particular, diffusivity values extrapolated to ambient temperature from elevated temperature data 
appear to predict values at the low end of this spectrum. Several studies near ambient 
temperature, however, report consistent values for hydrogen diffusivity of about 10-11 m2/s [10, 
15, 16], significantly higher than extrapolated values. The discontinuity between hydrogen 
diffusivity extrapolated from high temperature and hydrogen diffusivity measured directly at low 
temperature is interpreted to be due to hydrogen trapping, especially the trapping by vacancies at 
elevated temperature [15, 16]. At low temperature, the equilibrium vacancy concentration is 
sufficiently low that hydrogen transport should not be limited by interactions with vacancies 
(unless the material is supersaturated with vacancies, i.e. contains high concentration of non-
equilibrium vacancies due to the characteristics of materials processing).  
 
Aluminum is often considered to be a barrier to hydrogen permeation. Indeed, the native oxide 
on aluminum metal is an effective kinetic barrier to hydrogen permeation, thus as long as the 
oxide maintains its integrity the effective permeation of hydrogen through aluminum appears to 
be kinetically limited by surface processes. Using the apparent upper bounds for solubility and 
diffusivity that are quoted above, the hydrogen permeability through the aluminum lattice at 
ambient temperature would be about 2.5 x 10-17 mol H2 m

-1 s-1 MPa-1/2. This value is many orders 
of magnitude greater than values extrapolated from elevated temperature and several orders of 
magnitude lower than estimates for stainless steels. The effective permeability of aluminum with 
native oxide, however, will be much lower since the kinetics of formation of atomic hydrogen on 
the oxide is very low. 
 
 
3. Mechanical Properties: Effects of Gaseous Hydrogen 
 
3.1 Tensile properties 
 
3.1.1 Smooth tensile properties  
The tensile properties of commercially pure aluminum (99.0%; alloy 1100) are unaffected by 
testing in high-pressure gaseous hydrogen, Table 3.1.1.1. Similarly, the tensile properties of 
high-purity aluminum (99.993% annealed bar, Su = 103 MPa) were found to be unaffected by 
hydrogen pressure up to 52 MPa [7].  
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3.1.2. Notched tensile properties  
Notched tensile properties of commercially pure aluminum are not degraded by testing in high-
pressure gaseous hydrogen, Table 3.1.2.1. 
 
3.2 Fracture mechanics  
No known published data in hydrogen gas for pure aluminum. Fracture mechanics data on high-
strength aluminum alloys tested in hydrogen gas can be found in Refs. [1, 18]. The literature on 
the effects of hydrogen from environments (stress-corrosion cracking) is extensive and beyond 
the scope of this review; however, these effects have been shown to be substantial for highly 
alloyed aluminum. 
 
 
4. Metallurgical Considerations 
Hydrogen trapping appears to play an important role on the hydrogen transport in aluminum and 
its alloys [10, 15], if not the micromechanisms of hydrogen-assisted fracture. Therefore, test 
results need to be interpreted in the context of the specifics of the microstructural condition of 
the tested alloy. In the case of pure aluminum, the vacancy concentration is a critical concern for 
hydrogen transport, particularly since aluminum can have artificially high concentrations of 
vacancies due to quenching processes. 
 
Relatively large hydrogen contents in aluminum alloys can result from casting processes due to 
the high solubility of hydrogen in liquid aluminum [19]. There is a significant body of literature 
that addresses this issue for castings [20], which is beyond the scope of applications for high-
pressure hydrogen gas infrastructure. 
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Table 3.1.1.1. Smooth tensile properties of nominally pure aluminum tested at room temperature 
in high-pressure helium and hydrogen  gas. 

Material 
Thermal 

precharging 
Test 

environment 

Strain 
rate 
(s-1) 

Sy 
(MPa) 

Su 
(MPa) 

Elu 
(%) 

Elt 
(%) 

RA 
(%) 

Ref. 

None 34.5 MPa He — 110 — 42 93 1100 
O temper None 34.5 MPa H2 

0.67 
x10-3 — 110 — 39 93 

[8, 
9] 

 
 
 
Table 3.1.2.1. Notched tensile properties of nominally pure  aluminum tested at room 
temperature in high-pressure helium and hydrogen  gas.  

Material Specimen 
Thermal 

precharging 
Test 

environment 

Displace-
ment rate 
(mm/s) 

Sy 
(MPa) 

s 
(MPa) 

RA 
(%) 

Ref. 

34.5 MPa He 69 MPa He — 124 20 1100 
O temper 

(1) 
34.5 MPa H2 69 MPa H2 

0.4 
x 10-3 — 172 21 

[8, 
9] 

† yield strength of smooth tensile bar 
(1) V-notched specimen: 60˚ included angle; minimum diameter = 3.81 mm (0.15 inch); 

maximum diameter = 7.77 mm (0.306 inch); notch root radius = 0.024 mm (0.00095 
inch). Stress concentration factor (Kt) = 8.4. 

 
  


